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3[05C35, 90C27, 52B60]—Report on global methods for combinatorial isoperi-

metric problems, by L. H. Harper, Cambridge Studies in Advanced Mathematics,
Vol. 90, Cambridge University Press, 2004, xiv+231 pp., hardcover, $60.00, ISBN
0-521-83268-3

It is a very nice and useful book, written by a real expert in the field. A typical
problem can be described as follows. Let G be a graph with the edge set E and
the vertex set V , and let k be a given positive integer. The task is to choose a
k-element set S ⊆ V that minimizes the number of edges which are defined by one
vertex from S and by one vertex outside of S.

The book has been based on many years of teaching this material to graduate
students and this is certainly reflected in the style in which it is written. In a series
of lemmas and theorems, the author leads the reader through rather simple cases to
more complicated concepts. On the other hand, it offers a rich and varied selection
of problems from this beautiful branch of combinatorial optimization to which a
certain unifying “global” approach is developed. Informal comments at the end of
each chapter provide a nice supplement to the main text and also help to gain some
historical perspective on the subject. I believe that both specialists in the area and
mathematicians with other backgrounds will find lots of new interesting material
in this book.

Igor Shparlinski

E-mail address: igor@comp.mq.edu.au

4[65L60, 65L70, 65M60, 65Nxx, 74S05, 76M10]—Adaptive finite element

methods for differential equations, by Wolfgang Bangerth and Rolf Rannacher,
Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003, viii+207
pp., softcover, EUR 22.00/SF 35.00, ISBN 3-7643-7009-2

Finite element methods are, undoubtedly, one of the most general and powerful
techniques for the numerical solution of partial differential equations. Their histori-
cal roots can be traced back to the 1943 paper of Richard Courant [6] on variational
methods for the approximation of problems of equilibrium and vibration. Given
that V is an infinite dimensional Hilbert space, a(·, ·) is a continuous and coercive
bilinear functional on V × V and ℓ(·) is a continuous linear functional on V , the
archetypal linear variational problem consists of finding u in V such that

(P): a(u, v) = ℓ(v) for all v ∈ V.
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Boundary value problems for scalar linear elliptic partial differential equations or
elliptic systems, such as the Stokes problem modelling the flow of a viscous in-
compressible fluid in a bounded open set Ω ⊂ R

n, naturally fit into this abstract
variational framework.

In engineering and scientific applications it is frequently the case that, instead
of the field u itself, the quantity of interest is a certain output functional u �→ J(u);
typical examples include the weighted integral-mean-value of u, a point-value of u,
the normal flux of u through (part of) the boundary ∂Ω of Ω, or, in problems that
arise from fluid mechanics, the lift and the drag exerted on a body that is immersed
into a viscous or inviscid fluid.

The finite element approximation of the variational problem (P) consists of se-
lecting a finite dimensional space Vh (of dimension N = N(h, p)) of the space V

consisting of a piecewise polynomial function of a certain degree p on a triangula-
tion Th of granularity h of the computational domain Ω, and seeking uh ∈ Vh such
that

(Ph) : a(uh, vh) = ℓ(vh) for all vh ∈ Vh.

Adaptive finite element methods, driven by a posteriori error bounds, aim to auto-
matically adapt the local mesh-size h or the local polynomial degree p, or both h

and p, so as to accurately capture the analytical solution u, or a certain functional
u �→ J(u) of the solution.

It is this topic that forms the subject of the book by Bangerth and Rannacher
under review. The book grew out of a lecture series given by the second author
during the summer of 2002 at the Department of Mathematics of the ETH in Zürich.
It comprises a brief Preface, followed by twelve chapters, a 24-page Appendix, a
Bibliography with 138 entries, and a 5-page Index of terms; each chapter is about
15 pages long and is supplemented by computational examples as well as exercises
whose model solutions are supplied in the Appendix.

As is highlighted by the authors in Chapter 1 of the book, the goal of adaptivity
is the “optimal” use of computing resources according to either one of the following
principles:

• Minimal work N subject to a prescribed positive tolerance TOL: N → min,
TOL given; or,

• Maximal accuracy subject to prescribed work: TOL → min, N given.

These goals are, traditionally, approached by mesh adaptivity driven by “local re-
finement indicators” based on the computed solution uh. The process of adaptivity
has three main ingredients:

• a rigorous a posteriori bound on the error in the quantity of interest in
terms of the data and the computed solution;

• a local refinement indicator extracted from the a posteriori error bound;
• automatic mesh adaptation (in the form of local h-refinement, or local p-

refinement, or their combination referred to as hp-refinement) according to
certain refinement strategies based on the local refinement indicators.

The idea of a posteriori error estimation stems from the early work of Babuška
and Rheinboldt [2, 3]; see also the monographs of Ainsworth and Oden [1], Babuška
and Strouboulis [4], and Verfürth [21] for further detail on the subject of a posteriori

error analysis of the finite element method. The focus of this book by Bangerth and
Rannacher is a general technique for goal-oriented a posteriori error estimation for
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finite element approximations of differential equations, called the dual-weighted-
residual (DWR) method, and the implementation of this technique into adaptive
finite element algorithms.

To give a brief sketch of the DWR method, consider the variational problem
(P) and its finite element approximation (Ph) and suppose that the goal of the
computation is to find an accurate approximation to the real number J(u) where
J : V → R is (for the sake of simplicity of presentation) a linear functional and u

is the solution to problem (P).
The derivation of an a posteriori bound by means of the DWR method on the

error J(u) − J(uh) between the unknown value J(u) and its known finite element
approximation J(uh) rests on considering the associated dual problem: find z ∈ V

such that
(D): a(w, z) = J(w) for all w ∈ V.

Clearly, setting w = u − uh in (D), we deduce that

J(u) − J(uh) = J(u − uh) = a(u − uh, z)

= a(u − uh, z − vh)

for all vh ∈ Vh, where, in the transition to the last line, we made use of the Galerkin

orthogonality property: a(u−uh, vh) = 0 for all vh ∈ Vh, which is a straightforward
consequence of subtracting (Ph) from (P) with v = vh ∈ Vh ⊂ V . Proceeding then,
using (P), we obtain

J(u) − J(uh) = ℓ(z − vh) − a(uh, z − vh) ∀vh ∈ Vh.

Thus we have eliminated the analytical solution u, at the expense of involving
the dual solution z. The last identity can be written in a more compact form on
introducing the linear functional R(uh) : V → R, defined by

R(uh)(v) = ℓ(v) − a(uh, v) ∀v ∈ V,

referred to as the finite element residual , or, simply, residual ; it measures the extent
to which the numerical solution uh fails to satisfy the equation (P). Hence,

J(u) − J(uh) = R(uh)(z − vh)

= 〈R(uh), z − vh〉 ∀vh ∈ Vh,

where 〈·, ·〉 denotes the duality pairing between the dual space V ′ of V and V . This
error representation formula is at the heart of the DWR method, highlighting the
fact that the error in the approximation of the value J(u) depends on the interplay
between the finite element residual R(uh) and the error z − vh, with vh ∈ Vh, in
the approximation of the dual solution z, which acts as a weight function for the
residual. Hence the terminology dual-weighted-residual method. In particular, the
last identity implies that

(1) |J(u) − J(uh)| = inf
vh∈Vh

|〈R(uh), z − vh〉|.

In earlier incarnations of duality-based error estimation—particularly in the pi-
oneering research pursued by the Gothenburg school (see, for example, the articles
by Johnson [16], Eriksson and Johnson [13, 14], and the illuminating survey paper
by Eriksson, Estep, Hansbo, and Johnson [12])—the objective was to eliminate the
explicit appearance of the dual solution z from the right-hand side of (1) through a
succession of upper bounds. The first of these upper bounds involved making a par-
ticular choice of vh such as the finite element interpolant or quasi-interpolant Phz
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of z; this step was followed by localizing the expression |〈R(uh), z − Phz〉| through
decomposing it, as a sum of analogous terms defined locally, over the elements T

in the triangulation; the next step was to apply the Cauchy–Schwarz inequality
to each of these local terms in tandem with an interpolation-error bound such as
‖z − Phz‖L2(T ) ≤ Cinth

s
T ‖z‖Hs(T ), where hT = diam(T ), with T ∈ Th, and Cint is

an interpolation constant; and, finally, to exploit the strong stability of the dual
problem to bound the Sobolev norm ‖z‖Hs(Ω) in terms of the data of the dual
problem and the stability constant Cstab of the dual problem, resulting in an a

posteriori error bound of the form

|J(u) − J(uh)| ≤ CintCstab

(

∑

T∈Th

h2s
T ‖R(uh)‖2

L2(T )

)1/2

with no explicit dependence on the dual solution. While such an a posteriori error
bound is reliable in the sense that the right-hand side of the inequality is a guaran-
teed upper bound on the left-hand side, numerical experiments will quickly reveal
that, typically, the right-hand side will overestimate the left-hand side—sometimes
by orders of magnitude—even if the sharpest available values of the constants Cint

and Cstab are used. A further observation in connection with the last bound is that
the original feature of (1), namely that it is the interplay between R(uh) and z−vh,
with vh ∈ Vh, that governs the error J(u) − J(uh), rather than the size of R(uh)
alone, is completely lost through successive applications of the Cauchy–Schwarz in-
equality aimed at eliminating the presence of the dual solution z. The importance
of preserving the dual solution z as a locally varying weight to the residual is par-
ticularly important in instances when the dual solution exhibits complex behavior
over the computational domain Ω. Whether or not this is so, of course, depends
entirely on the nature of the problem (P) and the choice of the output functional J .
For example, when (P) is the weak formulation of an elliptic convection-dominated
diffusion equation and J(u) = u(x0), x0 ∈ Ω, the dual solution z will contain a
thin internal layer which will be aligned with the subcharacteristic curve passing
through x0. It would be unreasonable to expect that the presence of such a lo-
calized and anisotropic structure in the dual solution could be represented by, or
encoded into, a single constant, Cstab, the stability constant of the dual problem
featuring in the last a posteriori error bound.

These recognitions motivated, in the mid-1990s, the work of Becker and Ran-
nacher [7] where the dual-weighted-residual method was first introduced (see also
[8] and the survey articles [8] and [15]). At about the same time, other researchers
have also embarked on closely related investigations (see, for example, [17], [19] and
[20]).

In particular, in order to derive a sharp a posteriori error bound from the error
representation formula (1) while retaining the presence of the dual solution in the
bound as a local weight to the finite element residual, it was recognized in [7] that
the number of applications of the Cauchy-Schwarz inequality in the derivation of
the bound has to be kept to the minimum. An a posteriori error bound based on
the DWR method which meets these objectives can be inferred from (1); it has the
form

(2) |J(u) − J(uh)| ≤
∑

T∈Th

|〈R(uh)|T , z − Phz〉T |,
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where 〈·, ·〉T is a localized counterpart of the duality pairing 〈·, ·〉, R(uh)|T is the
restriction of the (global) finite element residual R(uh) to element T ∈ Th, and
Phz ∈ Vh is the finite element interpolant or quasi-interpolant of z.

Chapters 2–4 of the book are devoted to explaining the application of the DWR
method to an ODE model problem (Chapter 2) and a PDE model problem (Chap-
ter 3), and to discussing practical aspects of the method (Chapter 4), including the
evaluation of the DWR error bound (2) and other DWR error bounds akin to (2).
For, strictly speaking, inequality (2), as it stands, is not an a posteriori error bound
in the classical sense of the word, given that it involves the unknown analytical
solution z to the dual problem (D). Clearly, z has to be computed numerically; in
particular, if a finite element method is used to compute an approximation to z,
then a finite element space different from Vh must be used for this purpose; once
such an approximation to z is available, it has to be projected onto Vh to obtain
zh ∈ Vh which can be used in lieu of Phz in (2). The additional errors incurred
through the numerical approximation of the dual solution are difficult to quantify
unless one embarks on reliable a posteriori error estimation for the dual problem;
for reasons of economy, this is rarely attempted in practice. Indeed, there is very
little in the current literature in the way of rigorous analytical quantification of
the impact of replacing the exact dual solution z in the DWR error bound by its
numerical approximation; see, however, the recent analytical work of Carstensen
[5] on the estimation of higher Sobolev norm from lower order approximation, and
the application of this in the context of the DWR method. A second issue is
that the necessity to compute a “reasonably” accurate approximation to the dual
solution results in added computational work. The authors of the book provide
a convincing computational demonstration through a wide range of model prob-
lems that, except on very coarse meshes, a posteriori error bounds obtained by
the DWR method remain reliable and very sharp even on replacement of z by its
numerical approximation. In addition, when implemented into adaptive finite el-
ement algorithms, error bounds derived by the DWR method lead to economical
computational meshes.

An analysis aimed at gaining further theoretical insight into the performance of
the DWR method is performed in Chapter 5 of the book. The chapter also discusses
the current limits of theoretical analysis of the method focusing, in particular,
on convergence under mesh refinement of the finite element residual and of the
weights which incorporate the numerical approximation to the dual solution z. As
is noted by the authors at the end of Section 5.3, further challenges include the
convergence analysis of the method on locally refined meshes, particularly in the
presence of singularities in the solutions to the primal problem (P) and/or the dual
problem (D). Indeed, the convergence analysis of adaptive algorithms has been the
subject of active research in recent years (see, for example, the papers of Morin,
Nochetto, and Siebert [18], Cohen, Dahmen, and DeVore [11], and Binev, Dahmen,
and DeVore [10] in this direction in the context of energy-norm-based a posteriori

error estimation and adaptivity for elliptic problems).
Chapter 6 is concerned with the extension of the DWR method to nonlinear

variational problems. A particularly appealing feature of the DWR method from the
practical point of view is that, when applied to nonlinear PDEs, the dual problem,
which is simply the adjoint of the linearization of the primal problem, is still a
linear problem. Hence the computational overhead of obtaining an approximate
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dual solution is merely a fraction of the computational complexity of solving the
primal nonlinear problem itself.

Chapters 7 to 11 discuss the application of the DWR method to, respectively,
eigenvalue problems, optimization problems, time-dependent problems, linear and
nonlinear problems in structural mechanics, and problems in fluid dynamics in-
cluding the computation of drag and lift coefficients in a viscous incompressible
flow.

The book closes, in Chapter 12, with an overview of miscellaneous and open prob-
lems, including historical remarks and a survey of current developments. Some of
the open problems identified by the authors include the use of the DWR method
for multidimensional time-dependent problems, its application in the context of the
hp-version finite element method, the organization of anisotropic mesh refinement,
the effective control of variational crimes, the control of the error incurred in the
solution of algebraic equations which result from finite element discretizations of
differential equations, the application of the DWR method to nonvariational prob-
lems, and, finally, the solution of the theoretical problems raised in Chapter 5 so as
to provide complete theoretical underpinning of the DWR method. Some of these
are already the subject of ongoing research.

This well-written book is highly suitable as supporting text for an advanced
undergraduate or a basic graduate course on adaptive finite element methods for
partial differential equations. The material is clearly structured and well orga-
nized, and the numerous computational examples and exercises induce the reader
to further explore the subject. The discussions of open or incompletely understood
problems are particularly stimulating and raise the understanding of the reader to
the forefront of current research in the field. I warmly recommend this book to
anyone with interest in the analysis of finite element methods and their application
to partial differential equations.
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University of Oxford

5[11B85, 11Z05, 37A45, 37B10, 68Q45, 68R15, 94A45]—Automatic se-

quences. Theory, applications, generalizations, by Jean-Paul Allouche and Jef-
frey Shallit, Cambridge University Press, Cambridge, 2003, xvi+571 pp., $50.00,
ISBN 0-521-82332-3

Sequences come in all flavors. Some, such as periodic sequences, are

highly organized, while others are unordered and have no simple de-

scription. The subject of this book is automatic sequences and their

generalizations. Automatic sequences form a class of sequences some-

where between simple order and chaotic disorder. This class contains

such celebrated sequences as the Thue–Morse sequence and the Rudin–

Shapiro sequence. . . . [from the Introduction]

The subjects of this fine book include combinatorics on words, formal languages,
useful parts of number theory, formal power series, . . . . The chapter titles give
some hint of the breadth of material appropriately touched upon: Stringology,
Number Theory and Algebra, Numeration Systems, Finite Automata and Other
Models of Computation, Automatic Sequences, Uniform Morphisms and Automatic
Sequences, Cobham’s Theorem for (k, l) Numeration Systems, Morphic Sequences,
Frequency of Letters, Characteristic Words, Subwords, Cobham’s Theorem, Formal
Power Series, Automatic Real Numbers, Multidimensional Automatic Sequences,
Automaticity, k-Regular Sequences, Physics.

Automatic Sequences is both an introduction to the study of the said sequences
and related mathematics and a careful survey of known results and applications


