Multi-threading support in deal.II

Wolfgang Bangerth
University of Heidelberg

March 2000

Abstract

In this report, we describe the implementational techniques of multi-threading support in
deal.II, which we use for the parallelization of independent operations. Writing threaded
programs in C++ is obstructed by two problems: operating system dependent interfaces and
that these interfaces are created for C programs rather than for C++. We present our solutions
to these problems and describe first experiences using multi-threading in deal.II.

1 Background

Realistic finite element simulations tend to use enormous amounts of computing time and mem-
ory. Scientists and programmers have therefore long tried to use the combined power of several
processors or computers to tackle these problems.

The usual approach is to use physically separated computers (e.g. clusters) or computing units
(e.g. processor nodes in a parallel computer), each of which is equipped with its own memory,
and split the problem at hand into separate parts which are then solved on these computing
units. Unfortunately, this approach tends to pose significant problems, both for the mathematical
formulation as well as for the application programmer, which make the development of such
programs overly difficult and expensive.

For these reasons, parallelized implementations and their mathematical background are still
subject to intense research. In recent years, however, multi-processor machines have been devel-
oped, which pose a reasonable alternative to small parallel computers with the advantage of simple
programming and the possibility to use the same mathematical formulation that can also be used
for single-processor machines. These computers typically have between two and eight processors
that can access the global memory at equal cost.

Due to this uniform memory access (UMA) architecture, communication can be performed
in the global memory and is no more costly than access to any other memory location. Thus,
there is also no more need to change the mathematical formulation to reduce communication,
and programs using this architecture look very much like programs written for single processor
machines.

The purpose of this report is to explain the techniques used in deal.II (see [1, 2]) by which
we try to program these computers. We will first give a brief introduction in what threads are and
what the problems are which we have to solve when we want to use multi-threading. The third
section takes an in-depth look at the way in which the functionality of the operating system is
represented in a C++ program in order to allow simple and robust programming; in particular, we
describe the design decisions which led us to implement these parts of the library in the way they
are implemented. In the fourth section, we show several examples of parallelization and explain
how they work. Readers who are more interested in actually using the framework laid out in this
report, rather than the internals, may skip Section 3 and go directly to the applications in Section
4 (page 15).

2 Threads

The basic entity for programming multi-processor machines are threads. They represent parts of
the program which are executed in parallel. Threads can be considered as separate programs that
work on the same main memory. On single-processor machines, they are simulated by letting each



thread run for some time (usually a few milliseconds) before switching to the next thread. On
multi-processor machines, threads can truly be executed in parallel. In order to let programs use
more than one thread (which would be the regular sequential program), several aspects need to
be covered:

e How do we assign operations to different threads? Of course, operations which depend on
each other must not be executed in reverse order. This can be achieved by only letting
independent operations run on different threads, or by using synchronization methods. this
is mostly a question of program design and thus problem dependent, which is why both
aspects will only be briefly touched below.

e How does the operating system and the whole programming environment support this?

As mentioned, only the second aspect can be canonicalized, so we will treat it first. Some examples
of actual parallelized applications are discussed in Section 4.

3 Creating and managing threads

3.1 Operating system dependence and ACE

While all relevant operating systems now support multi-threaded programs, they all have different
notions on what threads actually are on an operating system level, how they shall be managed
and created. Even on Unix systems, which are usually well-standardized, there are at least three
different and mutually incompatible interfaces to threads: POSIX threads [6], Solaris threads [5],
and Linux threads. Some operating systems support more than one interface, but there is no
interface that is supported by all operating systems. Furthermore, other systems like Microsoft
Windows have interfaces that are incompatible to all Unix systems [3].

Writing multi-threaded programs based on the operating system interfaces is therefore some-
thing inherently incompatible unless much effort is spent to port it to a new system. To avoid
this, we chose to use the ACE (Adaptive Communication Environment, see [7, 8, 4]) library which
encapsulates the operating system dependence and offers a uniform interface to the user.

We chose ACE over other libraries, since it runs on almost all relevant platforms, including
most Unix systems and Microsoft Windows, and since it is to our knowledge the only library
which is actively developed by a large group. Furthermore, it also is significantly larger than only
thread management, offering interprocess communication and communication between different
computers, as well as many other services. Contrary to most other libraries, it therefore offers
both the ability to support a growing deal.II as well as the prospect to support independence
also with respect to future platforms.

3.2 C interface to threads versus C++

While ACE encapsulates almost all of the synchronization and interprocess interface into C++
classes, it for some reason does not do so for thread creation. Rather it only offers the basic C
interface: when creating a new thread, a function is called which has the following signature:

Code sample 1
void * £ (void * arg);

Thus, only functions which take a single parameter of type void* and return a void* may be
called. Further, these functions must be global or static member functions, as opposed to true
member functions of classes. This is not in line with the C++ philosophy and in fact does not fit
well into deal.II as well: there is not a single function in the library that has this signature.
The task of multi-threading support in deal.II is therefore to encapsulate member functions,
arbitrary types and numbers of parameters, and return types of functions into mechanisms built
atop of ACE. This has been done twice for deal.II, and we will explain both approaches. At



present, i.e. with version 3.0, only the first approach is distributed with deal.II, since the
second is still experimental and due to the high complexity. The latter approach, however, has
clear advantages over the first one, and it is planned to switch to it in the next major version of
deal.II.

3.3 First approach

The first idea is the following: assume that we have a class TestClass

Code sample 2
class TestClass {
public:
void test_function (int i, double d4);

};

and we would like to call test_object.test_function(1,3.1415926) on a newly created thread,
where test_object is an object of type TestClass. We then need an object that encapsulates the
address of the member function, a pointer to the object for which we want to call the function,
and both parameters. This class would be suitable:

Code sample 3

struct MemFunData {
typedef void (TestClass::*MemFunPtr) (int, double);
MemFunPtr mem_fun_ptr;
TestClass *object;
int argl;
double arg2;

s

We further need a function that satisfies the signature required by the operating systems (or
ACE, respectively), see Code Sample 1, and that can call the member function if we pass it an
object of type MemFunData:

Code sample 4
void * start_thread (void *arg_ptr) {
// first reinterpret the void* as a
// pointer to the object which
// encapsulates the arguments
// and addresses:
MemFunData *mem_fun_data
= reinterpret_cast<MemFunData *>(arg_ptr);
// then call the member function:
(mem_fun_data->object)
—>*(mem_fun_data->mem_fun_ptr) (mem_fun_data->argl,
mem_fun_data->arg2) ;
// since the function does not return
// a value, we do so ourselves:
return 0;

};

Such functions are called trampoline functions since they only serve as jump-off point for other
functions.
We can then perform the desired call using the following sequence of commands:

MemFunData mem_fun_data;
mem_fun_data.mem_fun_ptr = &TestClass::test_function;



mem_fun_data.object = &test_object;
mem_fun_data.argl 1;
mem_fun_data.arg?2 3.1415926;

ACE_Thread_Manager: :spawn (&start_thread,
(voidx*) &mem_fun_data) ;

ACE_Thread Manager: :spawn is the function from ACE that actually calls the operating system
and tells it to create a new thread and call the function which it is given as first parameter (here:
start_thread) with the parameter which is given as second parameter. start_thread, when
called, will then get the address of the function which we wanted to call from its parameter, and
call it with the values we wanted as arguments.

In practice, this would mean that we needed a structure like MemFunData and a function like
start_thread for each class TestClass and all functions test_function with different signatures.
This is clearly not feasible in practice and places an inappropriate burden on the programmer who
wants to use multiple threads in his program. Fortunately, C++ offers an elegant way for this
problem, in the form of templates: we first define a data type which encapsulates address and
arguments for all binary functions:

Code sample 5
template <typename Class, typename Argl, typename Arg2>
struct MemFunData {
typedef void (Class::*MemFunPtr) (Argl, Arg2);
MemFunPtr mem_fun_ptr;

Class *object;
Argil argl;
Arg2 arg2;

};
Next, we need a function that can process these arguments:

Code sample 6
template <typename Class, typename Argl, typename Arg2>
void * start_thread (void *arg_ptr) {
MemFunData<Class,Argl,Arg2> *mem_fun_data
= reinterpret_cast<MemFunData<Class,Argl,Arg2>*>(arg_ptr) ;
(mem_fun_data->object)
->*(mem_fun_data->mem_fun_ptr) (mem_fun_data->argl,
mem_fun_data->arg?2) ;
return 0;

};
Then we can start the thread as follows:

MemFunData<TestClass,int,double> mem_fun_data;
mem_fun_data.mem_fun_ptr = &TestClass::test_function;
mem_fun_data.object = &test_object;
mem_fun_data.argl =1;

mem_fun_data.arg?2 3.1415926;

ACE_Thread_Manager: : spawn (&start_thread<TestClass,int,double>,
(voidx*) &mem_fun_data) ;

Here we first create an object which is suitable to encapsulate the parameters of a binary function
that is a member function of the TestClass class and takes an integer and a double. Then we
start the thread using the correct trampoline function. It is the user’s responsibility to choose the



correct trampoline function (i.e. to specify the correct template parameters) since the compiler
only sees a void* and cannot do any type checking.

We can further simplify the process and remove the user responsibility by defining the following
class and function:

Code sample 7
class ThreadManager : public ACE_Thread_Manager {
public:
template <typename Class, typename Argl, typename Arg2>
static void
spawn (MemFunData<Class,Argl,Arg2> &MemFunData) {
ACE_Thread_Manager: :spawn (&start_thread<Class,Argl,Arg2>,
(voidx*) &MemFunData) ;

};

};

This way, we can call
ThreadManager: :spawn (mem_fun_data) ;

and the compiler will figure out which the right trampoline function is, since it knows the data
type of mem_fun_data and therefore the values of the template parameters in the ThreadManager: :
spawn function.

The way described above is basically the way which is used in deal.II version 3.0. Some care
has to be paid to details, however. In particular, C++ functions often pass references as arguments,
which however are not assignable after initialization. Therefore, the MemFunData class needs to
have a constructor, and arguments must be set through it. Assume, for example, TestClass had
a second member function

void f (int &i, double &d);

Then, we would have to use MemFunData<TestClass,int&,double&>, which in a form without
templates would look like this:

struct MemFunData {
typedef void (TestClass::*MemFunPtr) (int &, double &);
MemFunPtr mem_fun_ptr;
TestClass *object;
int &argi;
double &arg2;
};

The compiler would require us to initialize the references to the two parameters at construction
time of the MemFunData object, since it is not possible in C++ to change to which object a reference
points to after initialization. Adding a constructor to the MemFunData class would then enable us
to write

int i=1;
double d 3.1415926;
MemFunData<TestClass,int&,double&>
mem_fun_data (&test_object, i, d, &TestClass::f);

Non-reference arguments could then still be changed after construction. For historical reasons,
the pointer to the member function is passed as last parameter here.

The last point is that this interface is only usable for functions with two parameters. Basically,
the whole process has to be reiterated for any number of parameters which we want to support. In
deal.II, we therefore have classes MemFunData0 through MemFunDatal0, corresponding to member



function that do not take parameters through functions that take ten parameters. Equivalently,
we need the respective number of trampoline functions.

Additional thoughts need to be taken on virtual member functions and constant functions.
While the first are handled by the compiler (member function pointers can also be to virtual
functions, without explicitly stating so), the latter can be achieved by writing MemFunData<const
TestClass, int,double>, which would be the correct object if we had declared test_function
constant.

Finally we note that it is often the case that one member function starts a new thread by
calling another member function of the same object. Thus, the declaration most often used is the
following:

MemFunData<TestClass,int&,double&>
mem_fun_data (this, 1, 3.1415926, &TestClass::f);

Here, instead of an arbitrary test_object, the present object is used, which is represented by the
this pointer.

3.4 Second approach

While the approach outlined above works satisfactorily, it has one serious drawback: the program-
mer has to provide the data types of the arguments of the member function himself. While this
seems to be a simple task, in practice it is often not, as will be explained in the sequel.

To expose the problem, we take an example from one of our application programs where we
would like to call the function

template <int dim>
void DoFHandler<dim>::distribute_dofs (const FiniteElement<dim> &,
const unsigned int);

on a new thread. Correspondingly, we would need to use

MemFunData2<DoFHandler<dim>, const FiniteElement<dim> &, unsigned int>
mem_fun_data (dof_handler, fe, O,
&DoFHandler<dim>: :distribute_dofs) ;

to encapsulate the parameters. However, if one forgets the const specifier on the second template
parameter, one receives the following error message (using gec 2.95.2):

test.cc: In method ‘void InterstepData<2>::wake_up(unsigned int, Interst
epData<2>: :PresentAction)’:
test.cc:683: instantiated from here
test.cc:186: no matching function for call to ‘ThreadManager::Mem_Fun_Da
ta2<DoFHandler<2>,FiniteElement<2> &,unsigned int>::MemFunData2 (DoFHa
ndler<2> *, const FiniteElement<2> &, int, void (DoFHandler<2>::*) (const
FiniteElement<2> &, unsigned int))’
/home/atlasl/wolf/program/newdeal/deal.II/base/include/base/thread_manag
er.h:470: candidates are: ThreadManager::MemFunData2<DoFHandler<2>,Fin
iteElement<2> &,unsigned int>: :MemFunData2 (DoFHandler<2> *, FiniteElem
ent<2> &, unsigned int, void * (DoFHandler<2>::*) (FiniteElement<2> &, un
signed int))
/home/atlasl/wolf/program/newdeal/deal.II/base/include/base/thread_manag
er.h:480: ThreadManager : : MemFunData2<DoFHandler<2>,Fin
iteElement<2> &,unsigned int>::MemFunData2(DoFHandler<2> *, FiniteElem
ent<2> &, unsigned int, void (DoFHandler<2>::*) (FiniteElement<2> &, unsi
gned int))
/home/atlasl/wolf/program/newdeal/deal.II/base/include/base/thread_manag



er.h:486: ThreadManager: :MemFunData2<DoFHandler<2>,Fin
iteElement<2> &,unsigned int>::MemFunData2(const ThreadManager::Mem_Fu
n_Data2<DoFHandler<2>,FiniteElement<2> &,unsigned int> &)

While the compiler is certainly right to complain, the message is not very helpful. Further-
more, since interfaces to functions sometimes change, for example by adding additional default
parameters that do not show up in usual code, programs that used to compile do no more so with
messages as shown above.

Due to the lengthy and complex error messages, even very experienced programmers usually
need between five and ten minutes until they get an expression like this correct. In most cases,
they don’t get it right in the first attempt, so the time used for the right declaration dominates
the whole setup of starting a new thread. To circumvent this bottleneck at least in most cases, we
chose to implement a second strategy at encapsulating the parameters of member functions. This
is done in several steps: first let the compiler find out about the right template parameters, then
encapsulate the parameters, use the objects, and finally solve some technical problems with virtual
constructors and locking of destruction. We will treat these steps sequentially in the following.

3.4.1 Finding the correct template parameters.

C++ offers the possibility of templatized functions that deduce their template arguments them-
selves. In fact, we have used them in the ThreadManager: :spawn function in Code Sample 7
already. Here, this can be used as follows: assume we have a function encapsulation class

template <typename Class, typename Argl, typename Arg2>
class MemFunData { ... };

as above, and a function

template <typename Class, typename Argl, typename Arg2>

MemFunData<Class,Argl,Arg2>

encapsulate (void (Class::*mem_fun_ptr) (Argl, Arg2)) {
return MemFunData<Class,Argl,Arg2> (mem_fun_ptr);

+;

Then, if we call this function with the test class of Code Sample 2 like this:
encapsulate (&TestClass::test_function);

it can unambiguously determine the template parameters to be Class=TestClass, Argl=int,
Arg2=double.

3.4.2 Encapsulating the parameters.

We should not try to include the argument values for the new thread right away, for example by
declaring encapsulate like this:

template <typename Class, typename Argl, typename Arg2>
MemFunData<Class,Argl,Arg2>
encapsulate (void (Class::*mem_fun_ptr) (Argl, Arg2),
Argl argl,
Arg2 arg2,
Class object) {
return MemFunData<Class,Argl,Arg2> (mem_fun_ptr, object, argl, arg2);
};

The reason is that for template functions, no parameter promotion is performed. Thus, if we
called this function as in



encapsulate (&TestClass::test_function,
1, 3,
test_object);

then the compiler would refuse this since from the function pointer it must deduce that Arg2 =
double, but from the parameter “3” it must assume that Arg2 = int. The resulting error message
would be similarly lengthy as the one shown above.

One could instead write MemFunData like this:

template <typename Class, typename Argl, typename Arg2>
class MemFunData {
public:
typedef void (Class::*MemFunPtr) (Argl, Arg2);

MemFunData (MemFunPtr mem_fun_ptr_) {
mem_fun_ptr = mem_fun_ptr_;

};

void collect_args (Class *object_,
Argl argl_,
Arg2 arg2 ) {

object = object_;
argl = argl_;
arg?2 = arg2_;
s
MemFunPtr mem_fun_ptr;
Class *object;
Argil argl;
Arg2 arg?2;

};
One would then create an object of this type including the parameters to be passed as follows:
encapsulate (&TestClass::test_function).collect_args(test_object, 1, 3);

Here, the first function call creates an object with the right template parameters and storing the
member function pointer, and the second one, calling a member function, fills in the function
arguments.

Unfortunately, this way does not work: if one or more of the parameter types is a reference, then
the respective reference variable needs to be initialized by the constructor, not by collect_args.
It needs to be known which object the reference references at construction time, since later on
only the referenced object can be assigned, not the reference itself anymore.

Since we feel that we are close to a solution, we introduce one more indirection, which indeed
will be the last one:

Code sample 8
template <typename Class, typename Argl, typename Arg2>
class MemFunData {
public:
typedef void (Class::*MemFunPtr) (Argl, Arg2);

MemFunData (MemFunPtr mem_fun_ptr_,
Class *object_,
Argl argl_,
Arg2  arg2))



mem_fun_ptr (mem_fun_ptr_),

object (object_),
argl (argl ),
arg2 (arg2_) {};

MemFunPtr mem_fun_ptr;

Class *object;
Argil argi;
Arg2 arg2;

};

template <typename Class, typename Argl, typename Arg2>
struct ArgCollector {
typedef void (Class::*MemFunPtr) (Argl, Arg2);

ArgCollector (MemFunPtr mem_fun_ptr_) {
mem_fun_ptr = mem_fun_ptr_;

};

MemFunData<Class,Argl,Arg2>
collect_args (Class *object_,
Argl argl_,
Arg2  arg2) {
return MemFunData<Class,Argl,Arg2> (mem_fun_ptr, object,
argl, arg2);
};

MemFunPtr mem_fun_ptr;

};

template <typename Class, typename Argl, typename Arg2>

ArgCollector<Class,Argl,Arg2>

encapsulate (void (Class::*mem_fun_ptr) (Argl, Arg2)) {
return ArgCollector<Class,Argl,Arg2> (mem_fun_ptr);

s

Now we can indeed write for the test class of Code Sample 2:
encapsulate (&TestClass::test_function).collect_args(test_object, 1, 3);

The first call creates an object of type ArgCollector<...> with the right parameters and storing
the member function pointer, while the second call, a call to a member function of that intermediate
class, generates the final object we are interested in, including the member function pointer and
all necessary parameters. Since collect_args already has its template parameters fixed from
encapsulate, it can convert between data types.

3.4.3 Using these objects.

Now we have an object of the correct type automatically generated, without the need to type in
any template parameters by hand. What can we do with that? First, we can’t assign it to a
variable of that type, e.g. for use in several spawn commands:

MemFunData mem_fun_data = encapsulate(...).collect_args(...);



Why? Since we would then have to write the data type of that variable by hand: the correct data
type is not MemFunData as written above, but MemFunData<TestClass,int,double>. Specifying
all these template arguments was exactly what we wanted to avoid. However, we can do some
such thing if the variable to which we assign the result is of a type which is a base class of
MemFunData<...>. Unfortunately, the data values that MemFunData<...> encapsulates depend
on the template parameters, so the respective variables in which we store the values can only be
placed in the derived class and could not be copied when we assign the variable to a base class
object, since that does not have these variables.
What can we do here? Assume we have the following class structure:

Code sample 9
class FunDataBase {};

template <...> class MemFunData : public FunDataBase
{ /* as above */ };

class FunEncapsulation {
public:
FunEncapsulation (FunDataBase *f)
: fun_data_base (f) {};
FunDataBase *fun_data_base;

};

template <typename Class, typename Argl, typename Arg2>
FunEncapsulation
ArgCollector<Class,Argl,Arg2>::collect_args (Class *object_,
Argl argl_,
Arg2 arg2_) {
return new MemFunData<Class,Argl,Arg2> (mem_fun_ptr, object,

argl, arg2);
s
Note that in the return statement of the collect_args function, first a cast from MemFunDatax*
to FunDataBase#*, and then a constructor call to FunEncapsulation :: FunEncapsulation

(FunDataBase*) was performed.

In the example above, the call to encapsulate(...).collect_args(...) generates an object
of type FunEncapsulation, which in turn stores a pointer to an object of type FunDataBase, here
to MemFunData<. ..> with the correct template parameters. We can assign the result to a variable
the type of which does not contain any template parameters any more, as desired:

FunEncapsulation
fun_encapsulation = encapsulate (&TestClass::test_function)
.collect_args(test_object, 1, 3);

But how can we start a thread with this object if we have lost the full information about
the data types? This can be done as follows: add a variable to FunDataBase which contains the
address of a function that knows what to do. This function is usually implemented in the derived
classes, and its address is passed to the constructor:

Code sample 10
class FunDataBase {
public:
typedef void * (*ThreadEntryPoint) (void *);

FunDataBase (ThreadEntryPoint t)

10



thread_entry_point (t) {};

ThreadEntryPoint thread_entry_point;
s

template <...>
class MemFunData : public FunDataBase {
public:
// among other things, the constructor now does this:
MemFunData ()
FunDataBase (&start_thread) {};

static void * start_thread (void *args) {
// do the same as in Code Sample 4 above
}
};

void spawn (ACE_Thread_Manager &thread_manager,
FunEncapsulation &fun_encapsulation) {
thread_manager.spawn (*fun_encapsulation.fun_data_base
—>thread_entry_point,
&fun_data_base);

};

fun_encapsulation.fun data base->thread entry_point is given by the derived class as that
function that knows how to handle objects of the type which we are presently using. Thus, we
can now write the whole sequence of function calls (assuming we have an object thread manager
of type ACE_Thread Manager):

FunEncapsulation
fun_encapsulation = encapsulate (&TestClass::test_function)
.collect_args(test_object, 1, 3);
spawn (thread_manager, fun_encapsulation);

This solves our problem in that no template parameters need to be specified by hand any more.
The only source for lengthy compiler error messages is if the parameters to collect_args are in
the wrong order or can not be casted to the parameters of the member function which we want
to call. These problems, however, are much more unlikely in our experience, and are also much
quicker sorted out.

3.4.4 Virtual constructors.

While the basic techniques have been fully developed now, there are some aspects which we still
have to take care of. The basic problem here is that the FunEncapsulation objects store a
pointer to an object that was created using the new operator. To prevent a memory leak, we need
to destroy this object at some time, preferably in the destructor of FunEncapsulation:

FunEncapsulation: : “FunEncapsulation () {
delete fun_data_base;

};

However, what happens if we have copied the object before? In particular, this is always the case
using the functions above: collect_args generates a temporary object of type FunEncapsulation,
but there could be other sources of copies as well. If we do not take special precautions, only the
pointer to the object is copied around, and we end up with stale pointers pointing to invalid

11



locations in memory once the first object has been destroyed. What we obviously need to do when
copying objects of type FunEncapsulation is to not copy the pointer but to copy the object which
it points to. Unfortunately, the following copy constructor is not possible:

FunEncapsulation: :FunEncapsulation (const FunEncapsulation &m) {
fun_data_base = new FunDataBase (*m.fun_data_base);

};

The reason, of course, is that we do not want to copy that part of the object belonging to the
abstract base class. But we can emulate something like this in the following way (this programming
idiom is called “virtual constructors”):

Code sample 11
class FunDataBase {
public:
// as above

virtual FunDataBase * clone () const = 0;

};

template <...>
class MemFunData : public FunDataBase {
public:
// as above

// copy constructor:
MemFunData (const MemFunData<...> &mem_fun_data) {...};

// clone the present object, i.e.
// create an exact copy:
virtual FunDataBase * clone () comnst {
return new MemFunData<...>(*this);
};
};

FunEncapsulation: :FunEncapsulation (const FunEncapsulation &m) {
fun_data_base = m.fun_data_base->clone ();

};

Thus, whenever the FunEncapsulation object is copied, it creates a copy of the object it harbors
(the MemFunData<. . .> object), and therefore always owns its copy. When the destructor is called,
it is free to delete its copy without affecting other objects (from which it may have been copied,
or to which it was copied). Similar to the copy constructor, we have to modify the copy operator,
as well.

3.4.5 Spawning independent threads.

Often, one wants to spawn a thread which will have its own existence until it finishes, but is in
no way linked to the creating thread any more. An example would be the following, assuming
a function TestClass::compress_file(const string file name) exists and that there is an
object thread manager not local to this function:

string file_name;
// write some output to a file

12



// now create a thread which runs ‘gzip’ on that output file to reduce
// disk space requirements. don’t care about that thread any more
// after creation, i.e. don’t wait for its return
FunEncapsulation
fun_encapsulation = encapsulate (&TestClass::compress_file)
.collect_args(test_object, file_name);
spawn (thread_manager, fun_encapsulation);

// quit the present function
return;

The problem here is that the object fun encapsulation goes out of scope when we quit the
present function, and therefore also deletes its pointer to the data which we need to start the
new thread. If in this case the operating system was a bit lazy in creating the new thread, the
function start_thread would at best find a pointer pointing to an object which is already deleted.
Further, but this is obvious, if the function is taking references or pointers to other objects, it is
to be made sure that these objects persist at least as long as the spawned thread runs.

What one would need to do here at least, is wait until the thread is started for sure, before
deletion of the FunEncapsulation is allowed. To this end, we need to use a “Mutex”, to allow
for exclusive operations. A Mutex (short for mutually ezclusive) is an object managed by the
operating system and which can only be “owned” by one thread at a time. You can try to
“acquire” a Mutex, and you can later “release” it. If you try to acquire it, but the Mutex is owned
by another thread, then your thread is blocked until the present owner releases it. Mutices (plural
of “Mutex”) are therefore most often used to guarantee that only one thread is presently accessing
some object: a thread that wants to access that object acquires a Mutex related to that object
and only releases it once the access if finished; if in the meantime another thread wants to access
that object as well, it has to acquire the Mutex, but since the Mutex is presently owned already,
the second thread is blocked until the first one has finished its access.

Alternatively, one can use Mutices to synchronize things. We will use it for the follow-
ing purpose: the Mutex is acquired by the starting thread; when later the destructor of the
FunEncapsulation class (running on the same thread) is called, it tries to acquire the lock again;
it will thus only continue its operations once the Mutex has been released by someone, which we
do on the spawned thread once we don’t need the data of the FunEncapsulation object any more
and destruction is safe.

All this can then be done in the following way:

Code sample 12
class FunEncapsulation {
public:
// as before
“FunEncapsulation ();

};

class FunDataBase {
public:
// as before
Mutex lock;
};

template <typename Class, typename Argl, typename Arg2>
void * start_thread (void *arg_ptr) {
MemFunData<Class,Argl,Arg2> *mem_fun_data
= reinterpret_cast<MemFunData *>(arg_ptr);

13



// copy the data arguments:
MemFunData<Class,Argl,Arg2>: :MemFunPtr
mem_fun_ptr = mem_ fun_data->mem_fun_ptr;

Class * object = mem_fun_data->object;
Argil argl = mem_fun_data->argl;
Arg2 arg2 = mem_fun_data->arg2;

// data is now copied, so the original object may be deleted:
mem_fun_data->lock.release ();

// now call the thread function:
object—>*mem_fun_ptr (argl, arg2);

return 0;

};

FunEncapsulation:: “FunEncapsulation () {
// wait until the data is copied by the new thread and
// ‘release’ is called by ‘start_thread’:
fun_data_base->lock.acquire ();
// now delete the object which is no more needed
delete fun_data_base;

};

void spawn (ACE_Thread_Manager &thread_manager,
FunEncapsulation &fun_encapsulation) {
// lock the fun_encapsulation object
fun_encapsulation.fun_data_base->lock.acquire Q) ;
thread_manager.spawn (*fun_encapsulation.fun_data_base
—>thread_entry_point,
&fun_data_base) ;

};

When we call spawn, we set a lock on the destruction of the FunEncapsulation object just before
we start the new thread. This lock is only released when inside the new thread (i.e. inside the
start_thread function) all arguments have been copied to a safe place. Now we have local copies
and don’t need the ones from the fun_encapsulation object any more, which we indicate by
releasing the lock. Inside the destructor of that object, we wait until we can obtain the lock,
which is only after it has been released by the newly started thread; after having waited till this
moment, the destruction can go on safely, and we can exit the function from which the thread was
started, if we like so.

The scheme just described also works if we start multiple threads using only one object of type
FunEncapsulation:

FunEncapsulation
fun_encapsulation = encapsulate (&TestClass::test_function)
.collect_args(test_object, arg_value);
spawn (thread_manager, fun_encapsulation);
spawn (thread_manager, fun_encapsulation);

// quit the present function
return;

14



Here, when starting the second thread the spawn function has to wait until the newly started
first thread has released its lock on the object; however, this delay is small and should not pose a
noticeable problem. Thus, no special treatment of this case is necessary, and we can in a simple
way emulate the spawn_n function provided by most operating systems, which spawns several new
threads at once:

void spawn_n (ACE_Thread_Manager &thread_manager,
FunEncapsulation &fun_encapsulation,
const unsigned int n_threads) {
for (unsigned int i=0; i<n_threads; ++i)
spawn (thread_manager, fun_encapsulation);

};

A direct support of the spawn_n function of the operating system would be difficult, though, since
each of the new threads would call lock.release(), even though the lock was only acquired once.

Since we have now made sure that objects are not deleted too early, even the following sequence
is possible, which does not involve any named variables at all, only a temporary one, which
immediately released after the call to spawn:

Code sample 13
spawn (thread_manager,
encapsulate (&TestClass::test_function)
.collect_args(test_object, arg_value));

‘We most often use this very short idiom in the applications in Section 4 and in our own programs.

3.4.6 Number of parameters. Non-member functions.

Above, we have explained how we can define classes for a binary member function. This approach
is easily extended to member functions taking any number of parameters. We simply have to
write classes MemFunData0, MemFunDatal, and so on, which encapsulate member functions that
take zero, one, etc parameters. Likewise, we have to have classes ArgCollectorN for each number
of parameters, and functions encapsulate that return an object of type ArgCollectorN. Since
functions can be overloaded on their argument types, we need not call the encapsulate functions
differently.

All of which has been said above can also easily be adopted to global functions or static
member functions. Instead of the classes MemFunDataN we can then use classes FunDataN that
are also derived from FunDataBase. The respective ArgCollector classes then collect only the
arguments, not the object on which we will operate. The class, FunEncapsulation is not affected
by this, nor is FunDataBase.

4 Applications

In the next few subsections, we will show usual applications of multi-threading in the deal.II
library. The programs already use the new scheme discussed in Section 3.4.

4.1 Writing output detached to disk

The output classes, i.e. basically the classes DataOut and DataOutStack and their base classes,
follow a strictly hierarchical model of data flow. The two terminal classes know about such things as
triangulations, degrees of freedom, or finite elements, but they translate this structured information
into a rather simple intermediate format. This conversion is done in the build_patches functions
of these classes. The actual output routines only convert this intermediate format into one of the
supported graphics formats, which is then a relatively simple task.

15



This separation of processing of structured data and actual output of the intermediate format
was chosen since the actual output routines became rather complex with growing scope of the
whole library. For example, we had to update all output functions when vector-valued finite
elements were supported, and we had to do so again when discontinuous elements were developed.
This became an unmanageable burden with the growing number of output formats, and we decided
that an intermediate format would be more appropriate, which is created by only one function,
but can be written to output formats by a number of different functions.

In the present context, this has the following implications: once the intermediate data is created
by the build patches function, we need no more preserve the data from which it was made (i.e.
the grid which it was computed on, or the vector holding the actual solution values) and we can
go on with computing on the next finer grid, or the next time step, while the intermediate data
is converted to a graphics format file detached from the main process. The only thing which we
must make sure is that the program only terminates after all detached output threads are finished.
This can be done in the following way:

// somewhere define a thread manager that keeps track of all
// detached (‘global’) threads
ACE_Thread_Manager global_thread_manager;

// This is the class which does the computations:
class MainClass {

// now two functions, the first is called from the main program
// for output, the second will manage detached output

void write_solution ();

void write_detached (DataOut<dim> *data_out);

};

void MainClass::write_solution () {
DataOut<dim> *data_out = new Datalut<dim>();

// attach DoFHandler, add data vectors,
data_out->build_patches ();

// now everything is in place, and we can write the data detached
// Note that we transfer ownership of ‘data_out’ to the other thread
Threads: :spawn (global_thread_manager,
Threads: :encapsulate (§MainClass<dim>: :write_detached)
.collect_args(this, data_out));
s

void MainClass::write_detached (DataOut<dim> *data_out) {
ofstream output_file ("abc");
data_out->write_gnuplot (output_file);

// now delete the object which we got from the starting thread
delete data_out;

16



int main () {
// do all the work

// now wait for all detached threads to finish
global_thread_manager.wait ();

};

Note that the functions spawn and encapsulate are prefixed by Threads:: since in the actual
implementation in deal.II they are declared within a namespace of that name.

It should be noted that if you want to write output detached from the main thread, and from
the main thread at the same time, you need a version of the C++ standard library delivered
with your compiler that supports parallel output. For the GCC compiler, this can be obtained by
configuring it with the flag ——enable-threads at build time.

4.2 Assembling the matrix

Setting up the system matrix is usually done by looping over all cells and computing the con-
tributions of each cell separately. While the computations of the local contributions is strictly
independent, we need to transfer these contributions to the global matrix afterward. This transfer
has to be synchronized, in order to avoid that one thread overwrites values that another thread
has just written.

In most cases, building the system matrix in parallel will look like the following template:

void MainClass::build_matrix () {
// define how many threads will be used (here: 4)
const unsigned int n_threads = 4;
const unsigned int n_cells_per_thread
= triangulation.n_active_cells () / n_threads;

// define the Mutex that will be used to synchronise
// accesses to the matrix
ACE_Thread_Mutex mutex;

// define thread manager
ACE_Thread_Manager thread_manager;

vector<DoFHandler<dim>::active_cell_iterator>
first_cells (n_threads),
end_cells (n_threads);

DoFHandler<dim>::active_cell_iterator
present_cell = dof_handler.begin_active ();
for (unsigned int thread=0; thread<n_threads; ++thread)
{
// for each thread: first determine the range of cells on
// which it shall operate:
first_cells[thread] = present_cell;

end_cells[thread] = first_cells[thread];
if (thread != n_threads-1)
for (unsigned int i=0; i<n_cells_per_thread; ++i)
++end_cells[thread] ;
else
end_cells[thread] = dof_handler.end();

17



// now start a new thread that builds the contributions of

// the cells in the given range

Threads: :spawn (thread_manager,

Threads: :encapsulate (§MainClass: :build_matrix_threaded)
.collect_args (this,

first_cells[thread],
end_cells[thread],
mutex)) ;

// set start iterator for next thread
present_cell = end_cells[thread];
};

// wait for the threads to finish
thread_manager.wait Q);

};

void MainClass::build_matrix_threaded
(const DoFHandler<dim>::active_cell_iterator &first_cell,
const DoFHandler<dim>::active_cell_iterator &end_cell,
ACE_Thread_Mutex &mutex)

FullMatrix<double> cell_matrix;
vector<unsigned int> local_dof_indices;

DoFHandler<dim>::active_cell_iterator cell;
for (cell=first_cell; cell!=end_cell; ++cell)

{

// compute the elements of the cell matrix

// get the indices of the DoFs of this cell
cell->get_dof_indices (local_dof_indices);

// now transfer local matrix into the global omne.

// synchronise this with the other threads

mutex.acquire ();

for (unsigned int i=0; i<dofs_per_cell; ++i)

for (unsigned int j=0; j<dofs_per_cell; ++j)
global_matrix.add (local_dof_indices[i],

local_dof_indices[j],
cell matrix(i,j));

mutex.release ();

};
};

Note that since the build matrix threaded function takes its arguments as references, we
have to make sure that the variables to which these references point live at least as long as the
spawned threads. It is thus not possible to use the same variables for start and end iterator for
all threads, as the following example would do:

DoFHandler<dim>::active_cell_iterator
first_cell = dof_handler.begin_active ();

18



for (unsigned int thread=0; thread<n_threads; ++thread)

{
// for each thread: first determine the range of threads on
// which it shall operate:
DoFHandler<dim>: :active_cell_iterator end_cell = first_cell;
if (thread !'= n_threads-1)
for (unsigned int i=0; i<n_cells_per_thread; ++i)
++end_cell;
else
end_cell = dof_handler.end();
// now start a new thread that builds the contributions of
// the cells in the given range
Threads: :spawn (thread_manager,
Threads: :encapsulate(&MainClass: :build_matrix_threaded)
.collect_args (this, first_cell, end_cell, mutex));
// set start iterator for next thread
first_cell = end_cell;
};

Since splitting a range of iterators (for example the range begin_active() to end()) is a very
common task when setting up threads, there is a function

template <typename ForwardIterator>

vector<pair<ForwardIterator,ForwardIterator> >

split_range (const ForwardIterator &begin, const ForwardIterator &end,
const unsigned int n_intervals);

in the Threads namespace that splits the range [begin,end) into n_intervals subintervals of
approximately the same size.
Using this function, the thread creation function can now be written as follows:

void MainClass::build_matrix () {
const unsigned int n_threads = 4;
ACE_Thread_Mutex mutex;
ACE_Thread_Manager thread_manager;

// define starting and end point for each thread
typedef DoFHandler<dim>::active_cell_iterator active_cell_iterator;
vector<pair<active_cell_iterator,active_cell_iterator> >
thread_ranges
= split_range<active_cell_iterator> (dof_handler.begin_active (),
dof_handler.end (),
n_threads);

for (unsigned int thread=0; thread<n_threads; ++thread)
spawn (thread_manager,
encapsulate(&MainClass: :build_matrix_threaded)
.collect_args (this,
thread_ranges[thread] .first,
thread_ranges[thread] .second,
mutex));

19



thread_manager.wait ();

};

We have here omitted the Threads:: prefix to make things more readable. Note that we had
to explicitly specify the iterator type active_cell_iterator to the split_range function, since
the two iterators given have different type (dof_handler.end() has type DoFHandler<dim> ::
raw_cell_iterator, which can be converted to DoFHandler<dim>::active_cell_iterator) and
C++ requires that either the type is explicitly given or the type be unique.

A word of caution is in place here: since usually in finite element computations, the system
matrix is ill-conditioned, small changes in a data vector or the matrix can lead to significant
changes in the output. Unfortunately, since the order in which contributions to elements of the
matrix or vector are computed can not be predicted when using multiple threads, round-off can
come into play here. For example, taken from a real-world program, the following contributions
for an element of a right hand side vector are computed from four cells: —3.255208333333328815,
—3.255208333333333694, —3.255208333333333694, and —3.255208333333331526; however, due to
round-off the sum of these numbers depends on the order in which they are summed up, such that
the resulting element of the vector differed depending on the number of threads used, the number
of other programs on the computer, and other random sources. In subsequent runs of exactly the
same programs, the sum was either —13.02083333333332827 or —13.02083333333332610. Although
the difference is still only in the range of round-off error, it caused a change in the fourth digit of a
derived, very ill-conditioned quantity after the matrix was inverted several times (this accuracy in
this quantity was not really needed, but it showed up in the output and also led to different grid
refinement due to comparison with other values of almost the same size). Tracking down the source
of such problems is extremely difficult and frustrating, since they occur non-deterministically in
subsequent runs of the same program, and it can take several days until the actual cause is found.

One possible work-around is to reduce the accuracy of the summands such that the value of
the sum becomes irrespective of the order of the summands. One, rather crude method is to use a
conversion to data type float and back; the update loop from above would then look as follows:

for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
global_matrix.add (local_dof_indices[i],
local_dof_indices[j],
static_cast<float>(cell_matrix(i,j)));

Note that the cast back to double is performed here implicitly. The question whether a reduction
in accuracy in the order shown here is tolerable, is problem dependent. There are methods that
lose less accuracy than shown above.

The other, less computationally costly possibility would be to decrease the accuracy of the
resulting sum, in the hope that all accumulated round-off error is deleted. However, this is unsafe
since the order dependence remains and may even be amplified if the values of the sum lie around
a boundary where values are rounded up or down when reducing the accuracy. Furthermore,
problems arise if the summands have different signs and the result of summation consists of
round-off error only.

4.3 Parallel Jacobi preconditioning

When preconditioning a matrix, for example in a Conjugate Gradients solver, one may choose the
Jacobi scheme for preconditioning. The preconditioned vector ¥ is computed from the vector v

using the following relationship:
. 1
U = fvia
K23
where a;; are the diagonal elements of the matrix which we are presently inverting. As is obvious,
the result of preconditioning one element of v is entirely independent of all other elements, so this

operation is trivially parallelizable. In practice, this is done by splitting the interval [0,n) into

20



equal parts [n;,n;1+1),4 = 0,...,p — 1, where n is the size of the matrix, and p is the number of
processors. Obviously, ng = 0,n, =n, and n; < ni41.

Just like for splitting a range of iterators using the function split_range used above, there is
a function

vector<pair<unsigned int, unsigned int> >
split_interval (const unsigned int &begin, const unsigned int &end,
const unsigned int n_intervals);

that splits the interval [begin,end) into n_intervals equal parts. This function will be used to
assign each processor its share of elements v;.

Furthermore, we will use some functionality provided by the MultithreadInfo classin deal.IT.
Upon start-up of the library, the static variable multithread_info.n_cpus is set to the number
of processors in the computer the program is presently running on. multithread_info is a global
variable of type MultithreadInfo available in all parts of the library. Furthermore, there is a
variable multithread_info.n default threads, which by default is set to n_cpus, but which
can be changed by the user; it denotes the default number of threads which the library shall use
whenever multi-threading is implemented for some operation. We will use this variable to decide
how many threads shall be used to precondition the vector.

The implementation of the preconditioning function then looks like this:

// define an abbreviatory data type for an interval
typedef pair<unsigned int, unsigned int> Interval;

void Preconditioner::precondition_jacobi (const Matrix &m,
const Vector &v,
Vector &v_tilde) {
// define an abbreviation to the number
// of threads which we will use
const unsigned int n_threads = multithread_info.n_default_threads;
// first split the interval into equal pieces
vector<Interval> intervals = Threads::split_interval (0, m.rows(),
n_threads);

// then define a thread manager
ACE_Thread_Manager thread_manager;
// and finally start all the threads:
for (unsigned int i=0; i<n_threads; ++i)
Threads: :spawn (thread_manager,
Threads: :encapsulate (&Preconditioner::threaded_jacobi)
.collect_args (this, m, v, v_tilde, intervals[i]));

// wait for all the threads to finish
thread_manager.wait ();

};

void Preconditioner::threaded_jacobi (const Matrix  &m,
const Vector &v,
Vector &v_tilde,
const Interval &interval) {
// apply the preconditioner in the given interval
for (unsigned int i=interval.first; i<interval.second; ++i)
v_tilde(i) = v(i) / m(i,i);
};

21



It is noted, however, that more practical preconditioners are usually not easily parallelized.
However, matrix-vector and vector-vector operations can often be reduced to independent parts
and can then be implemented using multiple threads.

5 Conclusions

We have shown how multi-threading is supported in deal.II and how it can be used in several
examples occuring in common finite element programs. It was demonstrated that implementing
a usable C++ interface poses several difficulties, both from the aspect of user friendliness as well
as program correctness. In order to overcome these difficulties, first the more simple framework
implemented in deal.II version 3.0 was discussed, followed by a rather complex scheme which
will be the base of implementations in future versions.

The second framework features a more complicated hierarchy of classes as well as intricate use of
templates and synchronization mechanisms, which however led to a design in which threads can be
created in a user friendly, system independent, C++ like way suitable for common programs. The
use of this framework is inherently safe and does not require special knowledge of the internals by
the user, and is simple to use. By using it, the overhead required for programming multi-threaded
applications is reduced to a minimum and the programmer can concentrate on the task of getting
the semantics of multi-threaded programs right, in particular managing concurrent access to data
and distributing work to different threads.

The framework has been used in several application programs and has shown that with only
marginally increased programming effort, finite element programs can be made significantly faster
on multi-processor machines.

Acknowledgments. The author would like to thank Thomas Richter for his work in paralleliz-
ing several parts of the deal.II library, and Ralf Hartmann for help in the preparation of this
report.

References

[1] Wolfgang Bangerth and Guido Kanschat. Concepts for object-oriented finite element software
— the deal.II library. Preprint 99-43, SFB 359, Universitdt Heidelberg, October 1999.

[2] Wolfgang Bangerth and Guido Kanschat. deal.II Differential Equations Analysis Li-
brary, Technical Reference. =~ IWR Heidelberg, October 1999. http://gaia.iwr.uni-
heidelberg.de/~deal/.

[3] H. Custer. Inside Windows NT. Microsoft Press, Redmont, Washington, 1993.

[4] Douglas C. Schmidt et al. WWW homepage of the Adaptive Communications Environment
ACE, http://www.cs.wustl.edu/ schmidt/ACE.html.

[6] J. Eykholt, S. Kleinman, S. Barton, R. Faulkner, A. Shivalingiah, M. Smith, D. Stein, J. Voll,
M. Weeks, and D. Williams. Beyon multiprocessing... Multithreading the SunOS kernel. In
Proceedings of the Summer USENIX C++ Technical Conference, San Antonio, Tezxas, June
1992.

[6] IEEE. Threads extensions for portable operating systems. Technical report, IEEE, 1995.

[7] Douglas C. Schmidt. ACE: an object-oriented framework for developing distributed appli-
cations. In Proceedings of the Sizth USENIX C++ Technical Conference, Cambridge, Mas-
sachusetts. USENIX Association, April 1994.

[8] Douglas C. Schmidt and Nanbor Wang. An OO encapsulation of lightweight OS concurrency
mechanisms in the ACE toolkit. Technical Report WUCS-95-31, Washington University, St.
Louis, 1995.

22



