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Abstract

We present an approach to solving the acoustic wave equation by adaptive finite el-
ement methods. Using a global duality argument and Galerkin orthogonality, we obtain
a residual-based error representation with respect to an arbitrary functional of the so-
lution. This results in numerically evaluatable error estimates which are used for mesh
refinement. In this way, very economical and highly localized space-time meshes can be
generated which are tailored to the efficient computation of the quantity of interest. We
demonstrate the performance and some of the mechanisms acting in our approach by
numerical examples.

1 Introduction

We consider the acoustic wave equation

ρ(x)∂2
t u(x, t) −∇·a(x)∇u(x, t) = 0 (x, t) ∈ QT = Ω × I,

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x) x ∈ Ω, (1)

n·a(x)∇u(x, t) = 0 (x, t) ∈ Γ × I,Γ = ∂Ω.

on a space-time region QT := Ω × I , where Ω ⊂ R
d, d ≥ 1, and I = (0, T ) ; density ρ and

elastic coefficient a may vary in space. This equation frequently occurs in the simulation of
acoustic waves in gaseous or fluid media, seismics, electrodynamics and many other applica-
tions. In many cases, initial data and coefficients are rough or discontinuous which limits the
global regularity of solutions.

Since solutions to the wave equation often have very localized features, such as wave fronts,
it is widely recognized that efficient algorithms need to employ some kind of adaptivity in
the choice of computational grids. On the other hand, the quantities one is interest in from
an engineering viewpoint also are often local rather than global. It is therefore not always
necessary to resolve all features of a wave field, if one is only interested in a certain portion.
Adaptivity should therefore take into account both kinds of localization.

Despite the common perception that adaptivity is crucial to the efficient solution of the
wave equation, there does not exist much literature on a posteriori error estimates and prac-
tical implementations (see, e.g., Johnson [17], and Li and Wiberg [20]). However, there

1The authors acknowledge the support by the German Research Association (DFG) through the
Graduiertenkolleg and the SFB 359 at the IWR, Universität Heidelberg.
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exists significant work on a priori estimates for the wave equation (see, among many oth-
ers, Hulbert and Hughes [16], Hulbert [15], Johnson [17], Bales and Lasiecka [1], French and
Peterson [12]). Furthermore, goal-oriented a posteriori error estimation has been developed
for other equations than the wave equation (see Eriksson and Johnson [11], Eriksson, et
al. [10], Hartmann [14], Kanschat [18], Peraire and Patera [22], Oden and Prudhomme [21],
and [7, 6, 23]).

The main aim of this work is to derive residual-based a posteriori error representations for
the numerical solution of the wave equation. The local cell residuals are multiplied by weights
involving the solution of a global dual problem, which is adjusted to the quantity of interest.
While the residuals depend on the local regularity of the solution, the weights carry informa-
tion about the properties of the quantity of interest. By evaluating the error representation
on the space-time cells of the finite element mesh, we obtain local error indicators which are
used for mesh adjustment. In several examples, we will demonstrate the advantage of the
approach proposed in this work over other refinement strategies based on ad hoc criteria.

The outline of this paper is as follows. In the rest of this section, we will state the
continuous formulation of the problem, while in the next section, our method of discretization
of this formulation will be explained. In Section 3, we derive error estimates with respect
to arbitrary functionals of the solution based on duality arguments involving the residuals
of the numerical solution. The practical evaluation of this new weighted error estimator is
discussed in some detail. Global norm a posteriori estimates based on duality arguments have
already been derived by Johnson [17] for the discontinuous-in-time Galerkin approximation
of the wave equation. We will present numerical examples of computations with the proposed
methods in Section 4 and will conclude in Section 5.

1.1 The continuous problem

We will solve eq. (1) by a “velocity-displacement” formulation which is obtained by introduc-
ing a new velocity variable v = ∂tu . The corresponding weak formulation in space-time is
then obtained by multiplying by test functions τ from a “test space” T , integrating by parts
in space and imposing initial values w0 = {u0, v0} in a weak sense: Find w = {u, v} ∈ W ,
such that

a(w, τ ) = (ρw0, τ (0))Ω ∀τ = {ϕ,ψ} ∈ T, (2)

with the bilinear form

a(w, τ ) = (ρ∂tw, τ )QT
+

((
0 −ρ
a∇ 0

)
w,

(
1 0
0 ∇

)
τ

)

QT

+ (ρw(0), τ (0))Ω . (3)

The natural solution space is W := H1(I,H1(Ω))×H1(I, L2(Ω)) . For T we choose a subset
of L2(I, L2(Ω)) × L2(I,H

1(Ω)) which consists of functions right-continuous in time. We do
so in order to retain a well-defined weak enforcement of initial values in (2). Clearly, the
uniquely determined “strong” solution of (1) satisfies the variational equation.

This formulation of the wave equation, but without weak enforcement of initial values, and
discretizations thereof were investigated in Hulbert and Hughes [16], Bales and Lasiecka [1],
and French and Peterson [12] in the past; in the works by Hulbert [15], Johnson [17], and
Li and Wiberg [20], a variant is used where the definition of the velocity, v = ∂tu , is not
enforced in the L2 sense, but in H1 ; weak enforcement of initial values would need to be
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adjusted in this case as well. We chose the first formulation to take into account the case of
reduced regularity.

For the formulation as chosen above, it is standard to show the following a priori equal-
ity which is obtained by testing (2) with τ = {ρ−1∇·a∇u, v}χ[0,t′)(t) , with χ being the
characteristic function of the time interval [0, t′) and 0 < t′ ≤ T :

∥∥√ρv(t′)
∥∥2

Ω
+

∥∥√a∇u(t′)
∥∥2

Ω
=

∥∥√ρv0
∥∥2

Ω
+

∥∥√a∇u0
∥∥2

Ω
. (4)

Here we have used that the weak enforcement of initial values guarantees w(0) = w0 . This
implies that any “weak” solution in the sense of (2) coincides with the “strong” solution given
by (1). In view of the possibly missing smoothness of ρ and a the degree of regularity of the
solution expressed by the identity (4) may be maximal. We will restrict our discussion of a
posteriori error estimates to this natural situation.

Here and throughout the paper, we will use the notation

(ϕ,ψ)Ω =

∫

Ω
ϕψ dx, (ϕ,ψ)QT

=

∫

QT

ϕψ dx dt,

for L2 scalar products; ‖ϕ‖S = (ϕ,ϕ)
1/2
S is the L2 norm on some domain S . We also use the

obvious extension to vector valued functions.

2 Discretization

To discretize problem (2), we use the so–called Rothe approach of first discretizing in time
and then in space on each discrete time level. This has the advantage of having the freedom to
choose the computational mesh differently at each time level. We subdivide the time interval
I = (0, T ) into time slabs In = (tn−1, tn) with length kn = tn − tn−1 . With each tn , we
associate decompositions T

n of Ω into (open) quadrilaterals ( d = 2 ) or hexahedra ( d = 3 )
satisfying the usual condition of shape regularity (see, e.g., Ciarlet [9]); to ease local mesh
refinement and coarsening, we allow one “hanging node” per edge or face. We will denote
cells by the symbol K and their diameter by hK . For simplicity, we assume Ω to be a
polygonal or polyhedral domain.

The time semi-discretization is performed using the Crank-Nicolson scheme:

(
ρun − ρun−1, ϕ

)
Ω
− 1

2kn

(
ρvn + ρvn−1, ϕ

)
Ω

= 0,
(
ρvn − ρvn−1, ψ

)
Ω

+ 1
2kn

(
a∇(un + un−1),∇ψ

)
Ω

= 0,
(5)

with u0 and v0 being the initial values. We chose this time stepping scheme because it is of
second order and it is energy conserving, i.e.

‖√ρvn‖2
Ω +

∥∥√a∇un
∥∥2

Ω
=

∥∥√ρvn−1
∥∥2

Ω
+

∥∥√a∇un−1
∥∥2

Ω
.

This conservation property carries over to the the space-discretized equations provided that
the meshes T

n do not change between time levels.
Since we use a primal formulation of the problem, the space discretization of (5) can be

based on any one of the usual conforming Lagrangian finite element spaces Qr(Tn) of degree
r , which are defined on the computational grid T

n at time level tn ; these meshes may vary
between the time levels in order to allow for grid refinement moving with the wave field. This
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discretization leads to a system of two coupled matrix equations, which can be rewritten in
decoupled form

(
M + 1

4knA
)
Un = M̃Un−1 + knM̃V n−1 − 1

4k
2
nÃU

n−1,

MV n = M̃V n−1 − 1
2kn

(
AUn + ÃUn−1

)
.

(6)

Here, M = (Mij)ij =
(
(ρϕi, ϕj)

)
ij

is the “mass matrix” and A = (Aij)ij =
(
(a∇ϕi,∇ϕj)

)
ij

the “stiffness matrix” corresponding to the nodal basis functions ϕi, ϕj ∈ Qr(Tn) . M̃ =
(M̃ij)ij =

(
(ρϕi, ϕ̃j)

)
ij

and Ã = (Ãij)ij =
(
(a∇ϕi,∇ϕ̃j)

)
ij

are matrices linking the finite

elements functions ϕi ∈ Qr(Tn) and ϕ̃j ∈ Qr(Tn−1) .
These two equations, a discrete Helmholtz equation and a discrete L2-projection, are

solved by a preconditioned conjugated gradient method; we use symmetric Gauss-Seidel or
multigrid as preconditioner.

For the approach to error estimation which we will present in the next section, it is
important to note that the above discretization in time and space can be interpreted as a
simultaneous Galerkin discretization in space-time. By a straightforward calculation, we can
formulate it is follows: Find wh = {uh, vh} ∈ Wh , such that

a(wh, τ h) =
(
ρw0, τ h(0)

)
Ω

∀τh = {ϕh, ψh} ∈ Th. (7)

Functions in Wh and Th are discrete functions of the time and space variables. We can recover
the time discretization by the Crank-Nicolson scheme and the space discretization by finite
elements by the following choice of function spaces:

Wh =
{
wh = {uh, vh} : wh(x, t) globally continuous,

wh(·, t)|In
∈

(
Qr(Tn) ∪Qr(Tn−1)

)2
,

wh(·, tn) ∈ (Qr(Tn))2 ,

wh(x, t)|In
linear in t

}
,

(8)

Th =
{
τh = {ϕh, ψh} : τh(·, t) continuous in Ω,

τh(x, t)|In
constant in t,

τh(·, t)|In
∈ (Qr(Tn))2

}
.

(9)

Note that in the construction of Wh we have associated the triangulations T
n with discrete

time levels instead of the time slabs. In the interior of time slabs we let wh be from the
union of the finite element spaces defined on the triangulations at the two adjacent time
levels. This construction is necessary to allow for trial functions that are continuous also at
discrete time levels even if grids change between time steps. Associating triangulations with
time slabs instead of time levels would yield a time stepping scheme which includes jump
terms due to the discontinuity at discrete time levels. However, unlike for methods from the
family of discontinuous-in-time Galerkin schemes (c.f. Johnson [17]) the two function values
at a discontinuity are coupled and do not represent different degrees of freedom.

While we use hierarchically refined meshes, where the grids on the different time steps
share a common coarse grid, the methods described in this paper are not restricted to these
meshes. We note, however, that the transfer of solutions between different grids by projection
is prohibitively expensive if general unstructured meshes are used.
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For use in the next sections, we finally define a subdivision S(Tn−1,Tn) of Ω , as follows:

S(Tn−1,Tn) :=
{
ω ⊂ Ω | ∃K ∈ T

n−1,K ′ ∈ T
n : ω = K ∩K ′

}
.

In two dimensions, this set is the subdivision of Ω by the union of mesh lines of T
n−1 and

T
n . Due to the irregular structure of the elements of S(Tn−1,Tn) , computations are only

feasible with reasonable effort if the grids T
n−1 and T

n are related in some way. We note
that for hierarchically refined grids, S(Tn−1,Tn) is the set of most refined cells from the two
grids.

3 Error estimation

3.1 Preliminary remarks

Before we start out with the derivation of a posteriori error estimates, we would like to clarify
in what sense we will try to bound the error. Traditional a priori error analysis usually yields
error bounds like

‖u(·, T ) − uh(·, T )‖Ω ≤ C1(T ) k2

{
sup

0<t<T

∥∥∂3
t u(·, t)

∥∥
Ω

+ sup
0<t<T

∥∥∂2
t ∇u(·, t)

∥∥
Ω

}
+

+C2(T ) hr+1

{
sup

0<t<T

∥∥∂2
t ∇ru(·, t)

∥∥
Ω

+ sup
0<t<T

∥∥∇r+1u(·, t)
∥∥

Ω

}
, (10)

with h, k being the maximum space and time mesh size, respectively; see Hulbert and
Hughes [16], Johnson [17], Bales and Lasiecka [1], and French and Peterson [12]. How-
ever, (10) is not what one is usually interested in in practical applications from science and
engineering, for the following reasons:

• The constants Ci are unknown and estimates for them are usually too pessimistic.

• The exact solution u, which is unknown as well, enters the estimate.

• The required derivatives of the exact solution might not exist everywhere.

• The norm ‖u(·, T ) − uh(·, T )‖Ω might not be the quantity we want to control.

We will use a posteriori estimates to compensate for the unknown u and the problem of
nonexistent derivatives. The last point is important in practical applications, since bounds
on L2 or energy norms often do not allow to also bound the error with respect to other
quantities of interest. In particular, it should be noted that a priori estimates are almost
exclusively available for global (in space or space-time) norm-like quantities, while from an
application viewpoint localized quantities are of greater interest.

To illustrate our approach, let us assume our quantity of interest be a functional J(·) of
the solution w = {u, v} , which we will assume to be linear, for brevity. Examples for such
functionals are

J(w) = ∂tu(x0, T ), J(w) =

∫

C
n·∇u(x, T ) ds,

J(w) =

∫

Ω0⊂Ω
u(x, T ) dx, J(w) =

∫ T

0
u(x0, t) dt,
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denoting point evaluations, and integrals over curves C , subdomains Ω0 , or over time inter-
vals. Nonlinear functionals can be used after linearization as well, see [2, 6], but we will not
pursue this here. We will refer to J(·) by the names target functional or error functional.

Since the exact value J(w) is the quantity to be computed to best accuracy, but only
J(wh) is available, it will be our aim in the next subsections to derive a posteriori estimates
for the error

E = J(w) − J(wh). (11)

Note that due to the assumed linearity of the target functional, E = J(e) , with the error
e = w−wh . The practical derivation of estimates for E uses a method proposed in [7] which
is based on the general concept of residual-based a posteriori error estimation introduced in
Eriksson and Johnson [11] and Eriksson, et al. [10]; see also Johnson [17] for the application
of this approach for the wave equation.

3.2 Derivation of an error estimator

In order to derive an exact representation formula for the error, we first note that due to (2)
and its discrete form (7), the error e = w−wh satisfies an orthogonality relation with respect
to the bilinear form a(·, ·):

a(e, τ h) = 0, τ h ∈ Th. (12)

This property of finite element methods is called “Galerkin orthogonality”.
For deriving our error estimate, we employ a duality argument as used by Johnson [17]

for analyzing the discontinuous Galerkin approximation of the wave equation. We first define
a continuous dual problem: Find w∗ = {u∗, v∗} ∈W ∗ , such that

a∗(w∗, τ ) = J(τ ) ∀τ ∈ T ∗, (13)

with the dual bilinear form

a∗(w∗, τ ) = − (ρ∂tw
∗, τ )QT

+

((
1 0
0 ∇

)
w∗,

(
0 −ρ
a∇ 0

)
τ

)

QT

+ (ρw∗(T ), τ (T ))Ω ,

which resembles a wave equation for v∗ ,

ρ∂2
t v

∗ −∇·a∇v∗ = j1 − ∂tj2,

with u∗ = −∂tv
∗ − ρ−1∂tj2 , and the functions j(x, t) = {j1, j2} defined by J(τ ) = (j, τ )QT

.
Note that the integral kernels j may be Dirac functions if the integration in J(·) extends
over a manifold of dimension less than d+1 . Final values w∗(T ) are therefore also provided
by j .

Here, W ∗ = H1(I, L2(Ω)) × H1(I,H1(Ω)) , and T ∗ is a subset of L2(I,H
1(Ω)) ×

L2(I, L2(Ω)) consisting of functions left-continuous in time. Since W ⊂ T ∗ , note that if
τ ∈W , we get a∗(w∗, τ ) = a(τ ,w∗) by partial integration with respect to the time variable.
If we therefore test with τ = e ∈W and use Galerkin orthogonality, we obtain

E = J(e) = a(e,w∗ −w∗
h) (14)

for any w∗
h ∈ Th . Recalling the definition of the bilinear form a(·, ·) and integrating by parts

on each sub-cell K ∈ S(Tn−1,Tn) , we obtain the following result.
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Proposition 1 For the Galerkin finite element approximation (7) of the wave equation (1)
there holds the error identity

E =
∑

K∈T0

EK,0 +
N∑

n=1




∑

K∈S(Tn−1,Tn)

EK,n


 , (15)

with the cell-wise error indicators

EK,n = − (r1, u
∗ − u∗h)K×In

− (r2, v
∗ − v∗h)K×In

− 1
2 (n·r∂K , v

∗ − v∗h)∂K×In
,

EK,0 =
(
ρ(w0 −wh(0)),w∗(0) −w∗

h(0)
)
K
,

(16)

where w∗
h = {u∗h, v∗h} ∈ T ∗

h is arbitrary, and

r1 = ρuh,t − ρvh, r2 = ρvh,t −∇·a∇uh, n·r∂K = n·[a∇uh]

denote the cell residuals of the two equations and the jump of the conormal derivative of uh

between two adjacent cells, respectively; these residuals are computable.

Remark: In order to retain the optimal order of convergence not only globally, but also
locally, one has to use the liberty to choose w∗

h . Since r2 does not converge to zero, we
take w∗

h to be a suitable interpolation of w∗ with local projection properties (see [6] for an
example of such a construction); one can then replace

(r2, v
∗ − v∗h)K×In

= (r2 − r̄2, v
∗ − v∗h)K×In

,

with r̄2 being the projection of r2 into the corresponding polynom space.
Eq. (15) makes reference to the unknown continuous dual solution w∗ . Hence, in evalu-

ating it, we have to replace w∗ by a suitable numerical approximation. For this, there are
several possible methods, see [6]. Commonly, one of the following two ways is chosen:

• Directly replace w∗ in (16) by a numerical approximation w̃∗ . When using this ap-
proach, care must be taken to choose w̃∗ sufficiently far away from Th since otherwise
we could choose w∗

h ∈ Th , such that we essentially cancel out w̃∗ . Two common ap-
proaches to this problem are to either compute the numerical dual solution w̃∗ by a
higher order method, for example with finite elements of degree r + 1, or to compute
a w∗ with the same method and set w̃∗ = Ir+1

h w∗ to be the patchwise interpolation
of degree r+ 1 . Due to the complications inherent to the practical computation of the
special w∗

h noted above, we do not use it in our code but set w∗
h = Ihw̃

∗ , i.e. the nodal
interpolation in Th . Accordingly we do not subtract r̄2 also.

In principle, it is also necessary to use higher order approximations in time, either for
direct approximation of w∗ or as the result of an extrapolation process. However, both
possibilities are prohibitively more expensive than using higher order approximations
in space only, since the data of more than two time steps, possibly defined on different
grids each, has to be accessed. Therefore, in the computations presented below we have
chosen the cheaper option.
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• Using the Cauchy-Schwarz inequality yields

|EK,n| ≤ ‖r1‖K×In
‖u∗ − u∗h‖K×In

+ ‖r2 − r̄2‖K×In
‖v∗ − v∗h‖K×In

(17)

+ 1
2‖n·r2‖∂K×In

‖v∗ − v∗h‖∂K×In
,

and similar estimates for EK,0 . One can then use a variant of the Bramble-Hilbert
lemma for polynomials of different degree in space and time directions, to estimate

‖u∗ − u∗h‖K×In
≤ C

(
hr+1

K

∥∥∇r+1u∗
∥∥

K̃×In

+ kn‖∂tu
∗‖K̃×In

+ kr+1
n

∥∥∂r+1
t u∗

∥∥
K̃×In

)
,

with a patch of cells K̃ suitably chosen around K .

We can now approximate w∗ by a numerical solution w̃∗ = {ũ∗, ṽ∗} which we can
compute with the same polynomial degree r as for the primal solution wh ; in this
case, the derivatives ∇r+1 and ∂t have to be replaced by suitable difference quotients
∇h∇r and ∂t,h . In view of the inverse property of finite elements, we assume that we
can replace

∥∥∂r+1
t u∗

∥∥
K×In

→ k−r
n ‖∂tu

∗
h‖K×In

, to obtain

‖u∗ − u∗h‖K×In
≤ C

(
hr+1

K ‖∇h∇rũ∗‖K×In
+ kn‖∂t,hũ

∗‖K×In

)
(18)

for the first term in (17). The other two terms in (17) can be estimated in a similar
way. For the last one, a trace inequality has to be applied first.

The second way obviously is numerically less expensive since neither higher order finite
element solutions nor patchwise interpolations have to be computed. However, the loss of
the sign of EK,n makes its results questionable. This can easily be demonstrated by the
following example: assume exact and numerical solution as well as the computational grids are
symmetric with respect to the origin and the target functional is an antisymmetric evaluation
of its argument, e.g. J(w) = K(w(x, t))−K(w(−x, t)) with an arbitrary functional K . Then
the exact error J(e) ≡ 0 due to cancellation of error contributions of pairs of space-time cells
with locations symmetric with respect to the origin. However, after using the Cauchy-Schwarz
inequality, the computed estimate

∑ |EK,n| to the exact error will be different from zero.
We should remark that although the given example for J(·) is academic, cancellation of

contributions of space-time cells K×In to E plays an important role if the region of evaluation
of J(·) extends over more than one wave length in space, or over more than one period in
time. These considerations show that the proposed second way, though successfully used for
several equations such as Laplace’s equation [6], the heat equation (Hartmann [14]), radiative
transfer (Kanschat [18]) or in elasto-plasticity [23], poses problems in case of equations with
oscillatory solutions.

For the present work, we therefore choose the first approach. We use higher order approx-
imations instead of patchwise interpolations in space, which choice is motivated by academic
reasons, however, and is obviously not the way to go if computational resources are limited.
As time stepping scheme for the approximation w̃∗ to w∗ we use the Crank-Nicolson scheme
as well, lacking practical alternatives of higher order. Since the solutions produced by this
method are piecewise linear and continuous in time, but the elements of Th are piecewise
constant and discontinuous, the term w̃∗ −w∗

h , with w∗
h chosen as the interpolation of w̃∗

at the midpoint of each time interval, does indeed contain some information in time; however,
it is questionable whether the distance of the solutions with respect to Th is large enough
in this case to fully justify the replacement w∗ → w̃∗ . Better alternatives will have to be
employed here in the future.
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3.3 A global-norm error indicator

Sometimes, the target functional one is interested in is sufficiently global such that its domain
of influence (which is given by the support of the dual solution) is more or less the whole
domain. Then one does not gain much by solving for the dual solution and one can get
cheaper error indicators than the one above by using analytical a priori estimates for the dual
solution. We refer to Johnson [17] for corresponding analysis of the discretization of the wave
equation by the discontinuous-in-time Galerkin finite element method.

The derivation of error estimates in global norms using a priori estimates for the dual
solution is well known for Laplace’s equation. We would like to compare the grids obtained
by the weighted error estimator derived in the previous section with those resulting from the
use of one of these “traditional” error indicators. Without further justification, we select the
one proposed by Kelly, et al. [19]:

ηK,n = h
1/2
K ‖n·r∂K‖∂K×In

. (19)

Since we only refine the spatial grid, we have neglected the time step size kn . We will refer
to (19) by the name “energy error indicator”, since it was originally derived as an indicator
for the energy norm of the error.

Apart from its usefulness for Laplace’s equation, (19) can be made plausible by observing
that for finite elements of odd polynomial degree, the cell terms in (16) are of higher order
in the mesh width than the jump terms and therefore may be neglected. However, a rigorous
derivation of (19) is missing for the formulation and discretization of the wave equation used
in this paper.

4 Numerical results

In this section, we show some numerical examples which illustrate the error estimation ap-
proach derived above. The computations were performed with a program based on the
deal.II library described in [4, 3]. It allows the simulation of acoustic waves in one, two, and
three spatial dimensions. We chose a set of examples to demonstrate the following features
of our approach:

• By Example 1, an example of wave propagation in one spatial dimension, we try to
illustrate the way by which our approach works and how the resulting grids depend
on the primal solution and the solution of the dual problem derived from the target
functional.

• By Example 2, we investigate how the grid refinement procedure reacts to numerical
disturbances. For this, we choose the well-known effect of spurious reflections at dis-
continuities of the mesh size which is commonly viewed as one of the main obstacles for
adaptive methods for the computation of wave propagation.

• In Example 3, we present numerical results for an example, again in one space dimension,
involving more complex propagation of waves due to a discontinuous elasticity coefficient
a . This includes a comparison of the number of space-time cells needed by the different
methods of grid refinement presented in the last section, to obtain a given accuracy.
It also shows the efficiency in estimating the actual error with respect to the target
functional.

9



• In the final Example 4, we present a non-trivial case of two dimensional wave propaga-
tion.

In all examples, we set the density parameter ρ equal to one.

Example 1: One dimensional wave propagation. Consider eq. (1) for d = 1 , ρ =
a = 1 , and Ω = (−1, 1) . We choose initial and boundary conditions as shown in Figure 1.
The half width is chosen to be s = 0.1 and the end time as T = 2.7 . Computations in
this and the following examples are performed with linear elements in space and the time
discretization as described in Section 2.

u0(x) = exp

(
−x

2

s2

)(
1 − x2

s2

)
θ

(
1 − |x|

s

)
,

v0(x) = 0,

∂xu(−1) = 0,

∂xu(1) = 0,

with the jump function

θ(y) =

{
0 for y < 0,
1 for y ≥ 0.

paths of
waves

evaluation
line of

(example 1)

t=2.5

t=0
x=+1x=-1

t=1

evaluation
line of

(example 2)

Figure 1: Configuration of Examples 1 and 2.

We are now interested in the evaluation of only one branch of the solution, for example the
one initially traveling to the right. This is a rather frequent case if one wants to compare the
outcome of a simulation with measurements. Here we choose to localize the measurements at
t = 2.5 and around x = −0.5 and use as target functional the quantity

J(τ ) =

∫ −0.4

−0.6
ϕ(x, 2.5)dx,

with τ = {ϕ,ψ} . Note that the solution’s two peaks are centered around x = ±0.5 at
t = 2.5 , with diameter 0.2 as in the initial distribution. The solution u∗ of the corresponding
dual problem is shown in Fig. 2 on the left. As can easily be seen, the integral kernel of the
functional J(·) , i.e. the characteristic function of [−0.6, 0.4]×{2.5} , serves as source term for
the dual solution. The true dual solution therefore is discontinuous due to the discontinuous
integral kernel.

By (15), we now compute error estimates and refine the grid accordingly. The resulting
space-time grid after three refinement cycles is shown in Fig. 2. As can be seen, the error
estimator does not only do the obvious thing, which would be to track just one branch of the
two waves, but does also take into account errors occuring in the whole space-time domain.
It is therefore far better than a priori refining the mesh by hand, because one would not
refine the other branch at all. On the other hand, the branch leading directly to the region

10
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t
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Figure 2: Example 1. Left: primal solution u and dual solution u∗ . (Note that the dual
solution is solved backward in time.) Right: resulting space-time grid after three cycles of
refinement.

of evaluation is much more refined, due to the larger weighting in (15). Also note the very
coarse grid for t > 2.5 ; it is coarsened in each refinement cycle and will end up in only one
cell on each time level after some cycles. This is the reason for the bad resolution of the
solution at late times. Since the one-dimensional case with constant coefficients is too easily
solved to four or five digits of accuracy, we do not show convergence charts in this and the
following example.

Example 2. By this example, we want to demonstrate two aspects of the mechanism by
which the error estimator refines a grid. We consider the same setting as in Example 1, but
with the modified target functional

J(τ ) =

∫ +0.5

−0.5
ϕ(x, 1) dx,

with τ = {ϕ,ψ} . It is obvious from Fig. 1 that the exact value of the functional is J(w) = 0 .
We now choose the grid such that it is fine enough in the region x > − 1

3 (h = 1
48 ) and

too coarse to resolve the solution for x < − 1
3 (h = 1

6 ). In Fig. 3 the primal solution u is
shown along with the space-time grid. It is a well-known phenomenon that waves are partially
reflected from discontinuities of the mesh-size (see, e.g., Bažant [5], and Harari [13]), which
can also be seen in this example. In general, we have to expect our error estimator to produce
such sharp transitions in the mesh size at places where waves leave the domain of influence of
the target functional. In the first example this applies to the branch of the wave which does
not enter the evaluation of J(·) and which is not well resolved at all after about t = 2 when
the two branches meet for the last time. The question now is: will the target functional be
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Figure 3: Example 2. Left: Initial space-time grid. Right: primal solution u .

t

x

Figure 4: Example 2. Left: dual solution u∗ . Right: grid after four cycles of refinement.

affected by the reflections produced when this second branch runs into a region with a coarse
grid?

In the present case the reflections from the grid discontinuity affect the evaluation of the
target functional and we hope that the dual estimator will “see” this. To investigate this
question, we show the dual solution u∗ in Fig. 4 and the error distribution on the first grid
in Fig. 5. As we expected, the cell indicators EK,n are large in the region where the grid
is coarse. However, we should remark that this is the region where the error (with respect
to the target functional) is produced and that the error values are small along the path of
the spurious waves traveling into the region of evaluation of J(·) at the end time. The error
estimator is therefore able to separate between the regions where the error e = w − wh is
generated and where it is only propagated. The grid after four cycles of refinement is also
shown in Fig. 4; the discontinuity in the initial mesh size is no more visible.

The grid in Fig. 4 also shows that the refinement is directed mostly towards the edges
of the domain of evaluation, instead of the whole interior. The reason for this behavior is
connected to the special structure of the dual solution (see Fig. 4). The exact dual solution u∗

is piecewise constant in the interior of the different regions and therefore the weights u∗−u∗h
in the error representation (15) are zero. The terms involving u∗ therefore only contribute
at the boundaries of these regions. This corresponds to the fact that large residuals mean
spurious oscillations. These, however, do not affect the mean value of u as in the evaluation of
J(·) , unless the integration extends over less than the whole oscillation. The latter happens
only at the boundaries of the domain of influence, which are also the boundaries between the
different regions, i.e. where u∗ is discontinuous.

In contrast to this, v∗ is piecewise constant in space but piecewise linear in time, and
therefore v∗−v∗h 6= 0 in the interior of the different regions since v∗h is only piecewise constant
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Figure 5: Example 2. Distribution of |EK,n| on the first grid.

t

x

evaluation
Line of

x=-1 x=+1
t=0

t=T

Figure 6: Example 3. Left: layout of the space-time domain; the position of the discontinuity
of the coefficient as well as the most important waves are plotted. Middle: primal solution
u . Right: dual solution u∗ . The solutions are plotted after three cycles of refinement of the
space-time initial mesh.

in time. Thus, some grid refinement will occur also inside these regions.

Example 3. One dimensional wave propagation with high frequency and discon-

tinuous coefficients. As a more challenging problem, we take a similar situation as in
the previous example. In particular, we use the same initial values, but this time with a
frequency ten times as high, s = 0.01 . In addition, we choose a discontinuous elasticity
coefficient, a = 1 , for x < 0.2 and a = 9 for x ≥ 0.2 . The wave velocity to the right of the
discontinuity is therefore three times as high as to the left. The layout of the problem as well
as a numerical solution are shown in Fig. 6.

As target functional, we choose

J(τ ) =

∫ 0.03

−0.03
ϕ(x, 2.4) dx,

with τ = {ϕ,ψ} . As indicated in Fig. 6, this is the place where the two waves traveling to the
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Figure 7: Example 3. Space-time grids produced by the dual estimator (15) and by the sim-
plified energy estimator (19), after three cycles of refinement.

left and the right meet again after one reflection from the discontinuity. In addition, another
wave traveling back and forth between right boundary and discontinuity travels nearby as
well. The dual solution corresponding to this target functional is also shown in Fig. 6.

In order to evaluate the method under consideration, we compare the results of compu-
tations performed on grids refined by the dual estimator (15), by the energy error indicator
(19), and by global refinement. The time step is chosen to be k = 0.0008 which equals a
ratio of 50 time steps per period for the lowest frequency in the region with a = 1 (there,
the natural time scale is τ = 4s ), and roughly 16 time steps per period in the region with
a = 9 ( τ = 4s/

√
a). However, higher frequencies are significant in this example as well. We

note that the cells of the spatial mesh have an initial size of 1/32 . Therefore, in the region
with a = 1 the CFL number (kn

√
a)/(hK

√
ρ) becomes larger than one for the most refined

cells in the sixth refinement step, and in the fourth step in the region with a = 9 .
In Fig. 7 grids for the two types of error indicators are shown. It is clearly seen that the

grids resulting from (19) are denser and, as must be expected, are not adapted to the target
functional. In Fig. 8 we compare the convergence of the target functional for the different
methods of refinement. As can be seen, the dual estimator is able to produce a computational
grid which is significantly more economical than the one produced by the energy indicator
and the globally refine grid.

The relatively small errors for global refinement as compared to the energy error indicator
(19), in particular the first value, can be attributed to the fact that the time stepping scheme
used in this study is known to produce oscillations in front and behind the main wave, which
are much stronger on globally refined grids than on locally refined ones. However, they do
not affect much the mean value computed in J(wh) , which is why their error measured with
respect to the target functional is smaller than for refinement by (19); when measured in a
global norm, the solutions obtained on globally refined grids are much less accurate. With
regard to the first data point, the fringe waves mentioned above are too far away from the
main wave due to the coarse grid, so they do not affect the evaluation of J(wh) much, which
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Figure 8: Example 3. Left: values of the target functional J(w) for refinement by the dual
estimator (15), by the simplified energy error indicator (19), and by global refinement. Right:
true error J(e) and estimated error Ẽ , for refinement by the dual error estimator.

is localized around the main wave.
While (15) yields a good refinement criterion as shown above, it was derived as an error

estimator. It is therefore interesting to see whether we can also get accurate estimates for the
error from it. Table 1 shows the computed values J(wh) and their deviation from the true
value J(w) which is

J(w) =
s

2

√
π erf(1) +

s

e
≈ 0.011147.

In Fig. 8 and Table 1, the true error, J(e) = J(w) − J(wh) , is now compared against the
estimated error as obtained from (15) evaluated with a numerically obtained dual solution
of one polynomial degree higher than the primal one. We will denote the evaluated error
identity by Ẽ ; N denotes the number of space-time cells accumulated over all time steps
in the time interval [0, 2.4] . Up until the fifth iteration, the error reduces monotonically.
However, since we do not refine the time discretization in this example, the CFL number is
getting significantly larger than one, at which point the non-decreasing time discretization
error starts to dominate the total error. The reduction of error then stalls and shows a
somewhat erratic behavior at this low level. At this point also the error estimates become
rather unreliable, which we attribute to the problems mentioned at the end of Section 3,
namely the computation of the numerical dual solution by the same time stepping scheme.
This is suggested by the fact that the error estimates tend to zero while the true error does
not.

It should be noted, however, that while the relative error is in the range of more than one
per cent, the error estimate is quite reliable and follows the true error within a reasonable
distance. In particular note that it predicts the sign of the error correctly in this range.

With the present example we would also like to investigate another aspect of our approach.
In order to evaluate (15) numerically several possibilities were sketched in Section 3. We here
compare the following methods:

• Method 1: Replace w∗ by a numerically obtained solution w̃∗ which was computed
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N J(wh) J(e) Ẽ Ẽ/J(e)

1 189908 -0.00598 -0.00515 -0.00447 0.87
2 219755 -0.00677 -0.00436 -0.00407 0.93
3 259657 -0.00945 -0.00169 -0.00207 1.23
4 305734 -0.01022 -0.00092 -0.00058 0.63
5 349411 -0.01150 0.00036 0.00072 2.02
6 387773 -0.01158 0.00044 0.00065 1.49
7 415938 -0.01115 0.00001 0.00034 41
8 436568 -0.01104 -0.00010 0.00008 -0.75

Table 1: Example 3. Comparison between true and estimated error. N denotes the number
of space-time cells accumulated over all time steps. The erratic behavior from the sixth step
onwards is explained in the text.

with a polynomial degree one higher than that of the primal solution. As noted above,
the polynomial degree in the time direction is not changed.

• Method 2: Replace w∗ by a numerically obtained solution w̃∗ which was computed
with the same polynomial degree as the primal solution. Again, in time we use the same
approximation. We chose w∗

h as the natural nodal interpolation of w̃∗ in Th .

• Method 3: Apply the simplified error indicator (19), but weigh the value on each cell

with h−3
K ‖w∗ −w∗

h‖K ≈ h−1
K

∥∥∇2w∗
∥∥

K
≈ h

−3/2
K ‖[∂nṽ

∗]‖∂K . Note that we have assumed
r = 1 here and that we have neglected the time step, since that is taken constant
throughout the computations in this paper; w̃∗ is computed using the same polynomial
degree as for the primal solution.

While all the examples in this paper where computed with Method 1, except if noted other-
wise, Method 2 would seem to not work at first glance. The reason is that by introduction
of the element w∗

h due to Galerkin orthogonality, we can essentially cancel the difference
w̃∗ −w∗

h since both parts are piecewise polynomial with the same degree. However, because
w̃∗ ∈ Wh is piecewise linear in time, but w∗

h ∈ Th is piecewise constant, the difference does
not exactly cancel out, but rather is a measure for the size of the time derivative. Due to
the fact that for solutions of the wave equation space and time derivatives are somewhat cou-
pled (see, e.g., eq. (4)), ‖w∗ −w∗

h‖K×In
≈ C(h, h/k, r)‖w̃∗ −w∗

h‖K×In
. It is obvious that

C(h, h/k, r) → 1 if h→ 0 and h/k → 0 .
In the examples presented in this work we do not change the time discretization but only

refine the spatial mesh. Therefore, it is not surprising that Method 2 yields meshes which
are almost as efficient as the ones generated by the more expensive first method. There is
also no large visible difference between the meshes. However, we cannot expect the resulting
estimates for the error to be good. Additionally, one has to start on a spatially finer mesh
than with Method 1, in order to guarantee convergence of the meshes.

Contrary to Method 2, Method 3 does not take into account the time discretization error
but only measures spatial smoothness of primal and dual solutions. We expect this method to
yield good results on coarse grids but to return worse results if the spatial mesh is very fine.
However, as with Method 2 we have to start on a grid once more refined than for Method 1
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Figure 9: Example 3. Convergence results for the different methods of evaluating the error
identity. The results for refinement by the simplified energy error indicator are also shown
for comparison.

to ensure reasonable results. Methods 2 and 3 need to spend significantly less effort on the
computation of the dual solution than Method 1.

The convergence histories for the different methods are shown in Fig. 9. It is seen that
Method 2 converges equally fast to the exact value of J(·) , but starting with a once more
refined grid as noted above. Method 3 produces very similar grids as the first method, as
well.

Example 4. Two-dimensional wave propagation. In this example we consider a situ-
ation similar to the previous one. Let Ω = (−1, 1)2 ⊂ R

2 , and the initial values be

u0(x) = exp
(
−x

2

s2

)(
1 − x

2

s2

)
θ
(
1 − |x|

s

)
, v0 = 0,

with the jump function θ as in the first example, and s = 0.01 . Again, we choose the
elasticity coefficient discontinuous, a = 1 for y < 0.2 , and a = 9 for y ≥ 0.2 . A typical
wave pattern is shown in Fig. 10.

In geophysics and seismics it is an important task to accurately model the signal arrival
time at a given point. This situation often arises when comparing computed results with
measured ones in inverse media problems, where we want to deduce the coefficient function
a(x) from measurements. In our case, we are interested in the situation at the point x0 =
(0.75, 0) . As shown in the layout (see Fig. 10) the three first waves arriving at this point are
the Huyghens’ wave, the direct wave, and the one reflected from the discontinuity. Speaking
in ray theoretical terms, the first one travels into the medium of higher wave velocity, travels
some distance parallel to the discontinuity and then back towards the point of measurement.
Among all waves it is the one which has the least action along its path and is therefore called
Huyghens’ wave. From extrapolation of computed data, we estimate its arrival time to be
approximately τH ≈ 0.618 while the arrival times of the other ones are τd ≈ 3

4 = 0.75 for
the direct wave and τr ≈ 17

20 = 0.85 for the reflected wave. The latter two values neglect the
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Figure 10: Example 4. Left: layout of the wave pattern after some time; a bullet and a
cross indicate the positions of source and receiver, respectively. The dotted line indicates the
discontinuity in the coefficient, while the thick dashed line denotes the path of least action.
Right: plot of the solution at t = 0.45 .

extension of the initial distribution u0 . As arrival time we define

τ =

∫ t2
t1
tu(x0, t) dt

∫ t2
t1
u(x0, t) dt

, (20)

with a time interval (t1, t2) suitably chosen around the signal and such that it does not
include other signals. This interval is usually chosen in accordance with experimental data.
We take t1 = 0.55 and t2 = 0.68 , to catch the first wave only. Accordingly we choose T = t2
to stop the computation at the first possible time.

The proper target functional for this example would be a linearized form of the nonlinear
functional (20). However, we note that the denominator in (20) is a mean value and therefore
usually much better approximated than the numerator. It is therefore mostly a constant
factor scaling the dual solution and if we sacrifice the goal of quantitative error control in this
example, we may choose

J(τ ) =

∫ t2

t1

tϕ(x0, t) dt,

with τ = {ϕ,ψ} .
In Fig. 11 we show the computational grids at times t = 0.15 , t = 0.45 and t = T ,

as generated by refinement by the energy error indicator (19) and by the dual estimator
(15). It is readily seen that the latter only tracks that part of the wave field that travels
to the right. A closer look at a more complete sequence of grids than shown here reveals
that the most refined parts of the grids indeed track the path of least action (the dashed line
in Fig. 10) which marks the path of the first signal to arrive at the receiver. The first grid
shown is at a time where the wave to arrive first is still traveling upward, while in the second
it is already traveling downward again. These complicated features of wave propagation are
clearly reflected in the grids.

18



Figure 11: Example 4. Top row: grids at times t = 0.15 , t = 0.45 and t = T , with
refinement by the simplified energy error indicator (19). Bottom row: grids produced by the
dual estimator (15). All grids are after four cycles of refinement and coarsening.
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Figure 12: Example 4. Convergence of the target functional J(w) to the estimated exact
value 0.618 . Note that the dip in each curve are due to a change in the sign of the error.
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In Fig. 12 the convergence of the target functional J(wh) towards the inferred value
J(w) ≈ 0.618 is shown. Since the grids only tracked the interesting part of the wave it is
not surprising that it accomplishes the same accuracy with a significantly lower number of
space-time cells than the grids refined with the simplified energy error indicator (19).

Note that the dip in each curve is due to the error, J(wh) − 0.618 , changing its sign,
which happens to bring J(wh) close to the exact value. Leaving aside these two data points,
the grids as refined by (15) show a higher order of convergence than the grids as refined by
(19). It should be mentioned that refinement by the two methods starts from the same grid,
but that in the first step the error estimator (15) coarsens more cells than it refines, which
leads to an overall decrease of space-time cells.

5 Conclusions

In this paper, an approach has been presented to solving the acoustic wave equation by an
adaptive finite element method including a posteriori error control in physically meaningful
quantities. Refinement of the grid is based on a representation of the exact error with respect
to an arbitrary functional of the solution, which includes the local residuals of the numerical
solution and local weights derived from the solution of a dual problem which is adjusted to
the quantity of interest.

It was shown that meshes generated with the aid of refinement criteria derived from this
error identity are significantly superior to meshes obtained by a simplified refinement indi-
cator which does not include information on the quantity of interest. The superiority was
demonstrated with several examples of one and two dimensional wave propagation, including
high frequency waves and discontinuous coefficients. In particular, it was shown that refine-
ment based on the error representation is able to track where information comes from, thus
leading to highly localized grid refinement if the target functional is localized. In general,
the smaller the region of evaluation of the target functional is, the larger are the savings
of the new approach presented here compared to global refinement and to more traditional
approaches of adaptivity.

Furthermore, it was shown that using the approach presented here, quantitative error con-
trol is feasible. Using a complex example of one dimensional wave propagation, the estimated
error tracked the true error within a range of less than a factor of two. Additionally, the
indicated error correctly predicted the sign of the error.

Finally, several aspects of the underlying mechanisms have been investigated into, as well
as alternatives of the evaluation of the error representation formula. It was shown that good
mesh refinement criteria including the localized information about the target functional can
be obtained by computing the dual problem to the same accuracy as the primal one. This
doubles the computational cost compared to the pure forward solution, but usually reduces
the computing work by at least an order of magnitude compared to simple ad hoc approaches
to adaptivity, due to the more economical meshes produced.
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