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The parallel replica dynamics, originally developed by A. F. Voter, efficiently simu-

lates very long trajectories of metastable Langevin dynamics. We present an analogous

algorithm for discrete time Markov processes. Such Markov processes naturally arise,

for example, from the time discretization of a continuous time stochastic dynamics.

Appealing to properties of quasistationary distributions, we show that our algorithm

reproduces exactly (in some limiting regime) the law of the original trajectory, coars-

ened over the metastable states.

1 Introduction

We consider the problem of efficiently simulating time homogeneous Markov chains

with metastable states: subsets of state space in which the Markov chain remains for a

long time before leaving. By a Markov chain, we mean a discrete time stochastic process

satisfying the Markov property. Heuristically, a set S is metastable for a given Markov

chain if the Markov chain reaches local equilibrium in S much faster than it leaves

S. We will define local equilibrium precisely below, using quasistationary distributions

(QSDs). The simulation of an exit event from a metastable state using a naive integration

technique can be very time consuming.
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Metastable Markov chains arise in many contexts. The dynamics of physical sys-

tems are often modeled by memoryless stochastic processes, including Markov chains,

with widespread applications in physics, chemistry, and biology. In computational sta-

tistical physics (which is the main application field we have in mind), such models

are used to understand macroscopic properties of matter, starting from an atomistic

description. The models can be discrete or continuous in time. The discrete in time case

has particular importance: even when the underlying model is continuous in time, what

is simulated in practice is a Markov chain obtained by time discretization. In the con-

text of computational statistical physics, a widely used continuous time model is the

Langevin dynamics [17], while a popular class of discrete time models are the Markov

State Models [7, 24]. For details, see [17, 25]. For examples of discrete time models not

obtained from an underlying continuous time dynamics, see [5, 26]. In this article, we

propose an efficient algorithm for simulating metastable Markov chains over very long

time scales. Even though one of our motivations is to treat time discretized versions of

continuous time models, we do not discuss errors in exit events due to time discretiza-

tion; we refer the reader, for example, to [4] and references therein for an analysis of

this error.

In the physical applications above, metastability arises from the fact that the

microscopic time scale (i.e., the physical time between two steps of the Markov chain)

is much smaller than the macroscopic time scale of interest (i.e., the physical time

to observe a transition between metastable states). Both energetic and entropic bar-

riers can contribute to metastability. Energetic barriers correspond to high energy

saddle points between metastable states in the potential energy landscape, while

entropic barriers are associated with narrow pathways between metastable states;

see Figure 1.

Many algorithms exist for simulating metastable stochastic processes over long

time scales. One of the most versatile such algorithms is the parallel replica dynamics

(ParRep) developed by Voter [29] and Voter et al. [30]. ParRep can be used with both ener-

getic and entropic barriers, and it requires no assumptions about temperature, barrier

heights, or reversibility. The algorithm was developed to efficiently compute transitions

between metastable states of Langevin dynamics. For a mathematical analysis of Par-

Rep in its original continuous time setting, see [16, 27]. In this article, we present an

algorithm which is an adaptation of ParRep to the discrete time setting. It applies to

any Markov chain.

ParRep uses many replicas of the process, simulated in parallel asynchronously,

to rapidly find transition pathways out of metastable states. The gain in efficiency over
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1.1 1.2

Fig. 1. (1.1) Energetic and (1.2) entropic metastable states of a discrete configuration space

Markov chain. The chain jumps from one point to another according to the following Metropo-

lis dynamics. If Xn = x, a direction (in (1.1), left or right; in (1.2), up, down, left, or right) is selected

uniformly at random. If there is a point y which neighbors x in this direction, then with proba-

bility min{1, eV(x)−V(y)} we take Xn+1 = y; otherwise Xn+1 = x. Here, V is a given potential energy

function. On the left, each point has only two neighbors, and the potential energy is represented

on the y-axis. On the right, each point has the same potential energy and between two and four

neighbors.

direct simulation comes from distributing the computational effort across many proces-

sors, parallelizing the problem in time. The cost is that the trajectory becomes coarse-

grained, evolving in the set of metastable states instead of the original state space. The

continuous time version of ParRep has been successfully used in a number of prob-

lems in materials science (see, e.g., [1, 13, 15, 18, 22, 23, 28]), allowing for atomistic

resolution while also reaching extended time scales of microseconds, 10−6 s. For refer-

ence, the microscopic time scale—typically the period of vibration of bond lengths—is

about 10−15 s.

In the continuous time case, consistency of the algorithm relies on the fact

that first exit times from metastable states are exponentially distributed. Thus, if N

independent identically distributed (i.i.d.) replicas have first exit times Ti, i = 1, . . . , N,

then N min(T1, . . . , TN) has the same law as T1. Now if K = arg min(T1, . . . , TN) is the

first replica which leaves the metastable state amongst all the replicas, then the sim-

ulation clock is advanced by NTK , and this time agrees in law with the original pro-

cess. In contrast, in the discrete time case, the exit times from metastable states

are geometrically distributed. Thus, if τi are now the geometrically distributed first

exit times, then N min(τ1, . . . , τN) does not agree in law with τ1. A different function

of the τi must be found instead. This is our achievement with Algorithm 3.1 and
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Proposition 4.5. Our algorithm is based on the observation that N[min(τ1, . . . , τN) − 1] +
min[i ∈ {1, . . . , N}, τi = min(τ1, . . . , τN)] agrees in law with τ1.

This article is organized as follows. In Section 2, we formalize the notion of local

equilibrium using QSDs. In Section 3, we present our discrete time ParRep algorithm,

and in Section 4 we study its consistency. Examples and a discussion follow in Section 5.

2 Quasistationary Distributions

Throughout this work, (Xn)n≥0 will be a time homogeneous Markov chain with values in

a probability space (Ω,F , P). For a random variable X and probability measure μ, we

write X ∼ μ to indicate X is distributed according to μ. For random variables X and Y,

we write X ∼ Y when Y is a random variable with the same law as X. We write P
μ(Xn ∈ A)

and E
μ[ f(Xn)] to denote probabilities and expectations for the Markov chain (Xn)n≥0

starting from the indicated initial distribution: X0 ∼ μ. In the case that X0 = x, we write

P
x(Xn ∈ A) and E

x[ f(Xn)] to denote probabilities and expectations for the Markov chain

starting from x.

To formulate and apply ParRep, we first need to define the metastable sub-

sets of Ω, which we will simply call states. The states will be used to coarse-grain

the dynamics.

Definition 2.1. Let S be the collection of states, which we assume are disjoint bounded

measurable subsets of Ω. We write S for a generic element of S, and Π : Ω → Ω/S for

the quotient map identifying the states. �

As we will be concerned with when the chain exits states, we define the first exit

time from S,
τ := min{n≥ 0 : Xn /∈ S}.

Much of the algorithm and analysis depends on the properties of the QSD, which we

now define.

Definition 2.2. A probability measure ν with support in S is a QSD if for all measurable

A⊂ S and all n∈ N,
ν(A) = P

ν(Xn ∈ A| τ > n). (1)

�

Of course, both τ and ν depend on S, but for ease of notation, we do not make this

explicit. The QSD can be seen as a local equilibrium reached by the Markov chain,
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conditioned on the event that it remains in the state. Indeed, it is easy to check that

if ν is a measure with support in S such that,

for any measurable A⊂ S and any μ with support in S, ν(A) = lim
n→∞ P

μ(Xn ∈ A| τ > n),

(2)

then ν is the QSD, which is then unique. In Section 4.1, we give sufficient conditions

for existence and uniqueness of the QSD and for the convergence (2) to occur (see

Theorem 4.2). We refer the reader to [6, 8, 9, 16, 20, 21] for additional properties of

the QSD.

3 The Discrete Time ParRep Algorithm

Using the notation of the previous section, the aim of the ParRep algorithm is to effi-

ciently generate a trajectory (X̂n)n≥0 evolving in Ω/S which has, approximately, the same

law as the reference coarse-grained trajectory (Π(Xn))n≥0. Two of the parameters in the

algorithm—Tcorr = Tcorr(S) and Tphase = Tphase(S), called the decorrelation and dephasing

times—depend on the current state S, but for ease of notation we do not indicate this

explicitly. See the remarks below Algorithm 3.1.

Algorithm 3.1. Initialize a reference trajectory Xref
0 ∈ Ω. Let N be a fixed number of

replicas and Tpoll be a fixed polling time at which the replicas resynchronize. Set the

simulation clock to zero: Tsim = 0. A coarse-grained trajectory (X̂n)n≥0 evolving in Ω/S is

obtained by iterating the following:

Decorrelation Step: Evolve the reference trajectory (Xref
n )n≥0 until it spends Tcorr con-

secutive time steps in some state S ∈ S. Then proceed to the dephasing step. Through-

out this step, the simulation clock Tsim is running and the coarse-grained trajectory

is given by

X̂Tsim = Π(Xref
Tsim

). (3)

Dephasing Step: The simulation clock Tsim is now stopped and the reference and

coarse-grained trajectories do not evolve. Evolve N independent replicas {X j
n}N

j=1

starting at some initial distribution with support in S, such that whenever a replica

leaves S it is restarted at the initial distribution. When a replica spends Tphase con-

secutive time steps in S, stop it and store its end position. When all the replicas have

stopped, reset each replica’s clock to n= 0 and proceed to the parallel step.
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Parallel Step: Set M = 1 and iterate the following:

1. Evolve all N replicas {X j
n}N

j=1 from time n= (M − 1)Tpoll to time n= MTpoll. The

simulation clock Tsim is not advanced in this step.

2. If none of the replicas leaves S during this time, update M = M + 1 and return to

1, above.

Otherwise, let K be the smallest number j such that X j
n leaves S during this time,

let τ K be the corresponding (first) exit time, and set

Xacc = XK
τ K , Tacc = (N − 1)(M − 1)Tpoll + (K − 1)Tpoll + τ K . (4)

Update the coarse-grained trajectory by

X̂n = Π(S) for n∈ [Tsim, Tsim + Tacc − 1], (5)

and the simulation clock by Tsim = Tsim + Tacc. Set Xref
Tsim

= Xacc, and return to the

decorrelation step.

�

The idea of the parallel step is to compute the exit time from S as the sum of

the times spent by the replicas up to the first exit observed among the replicas. More

precisely, if we imagine the replicas being ordered by their indices (1 through N), this

sum is over all N replicas up to the last polling time, and then over the first K repli-

cas in the last interval between polling times, K being the smallest index of the replicas

which are the first to exit. Note that M and τ K are such that τ K ∈ [(M − 1)Tpoll + 1, MTpoll].

See Figure 2 for a schematic of the Parallel Step. We comment that the formula for

updating the simulation time in the parallel step of the original ParRep algorithm is

simply Tacc = Nτ K .

A few remarks are in order (see [16, 27] for additional comments on the continu-

ous time algorithm):

The Decorrelation Step. In this step, the reference trajectory is allowed to

evolve until it spends a sufficiently long time in a single state. At the ter-

mination of the decorrelation step, the distribution of the reference trajec-

tory should be, according to (2), close to that of the QSD (see Theorem 4.2 in

Section 4.1).

The evolution of the reference trajectory is exact in the decorrelation

step, and so the coarse-grained trajectory is also exact in the decorrelation

step.
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Fig. 2. A schematic of the parallel step. The horizontal lines represent the trajectories of replicas

1, . . . , N while the crosses correspond to exit events. Index K is as defined as in Algorithm 3.1.

Here, M cycles internal to the parallel step have taken place. The thicker lines correspond to the

portions of the chains contributing to Tacc.

The Dephasing Step. The purpose of the dephasing step is to generate N

i.i.d. samples from the QSD. While we have described a simple rejection

sampling algorithm, there is another technique [3] based on a branching

and interacting particle process sometimes called the Fleming–Viot parti-

cle process [11]. See [2, 9, 12, 19, 21] for studies of this process, and [3]

for a discussion of how the Fleming–Viot particle process may be used

in ParRep.

In our rejection sampling, we have flexibility on where to initialize

the replicas. One could use the position of the reference chain at the end of

the decorrelation step, or any other point in S.

The Decorrelation and Dephasing Times. Tcorr and Tphase must be suffi-

ciently large so that the distributions of both the reference process and the
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replicas are as close as possible to the QSD, without exhausting computa-

tional resources. Tphase and Tcorr play similar roles, and they both depend on

the initial distribution of the processes in S.

Choosing good values of these parameters is nontrivial, as they

determine the accuracy of the algorithm. In [3], the Fleming–Viot parti-

cle process together with convergence diagnostics are used to determine

these parameters on the fly in each state. They can also be postulated

from some a priori knowledge (e.g., barrier height between states),

if available.

The Polling Time. The purpose of the polling time Tpoll is to permit for peri-

ods of asynchronous computation of the replicas in a distributed computing

environment. For the accelerated time to be correct, it is essential that all

replicas have run for at least as long as replica K. Ensuring this requires

resynchronization, which occurs at the polling time.

If communication amongst the replicas is cheap or there is little

loss of synchronization per time step, one can take Tpoll = 1. In this case,

M = min{n : ∃ j ∈ {1, . . . , N} s.t. X j
n 
∈ S} is the first exit time observed among

the N replicas, K = min{ j : X j
M 
∈ S} (so M = τ K ) and Tacc = N(τ K − 1) + K.

Efficiency of the Algorithm. For the algorithm to be efficient, the states must

be truly metastable: within each state, the typical time to reach the QSD (Tcorr

and Tphase) should be small relative to the typical exit time. If most states

are not metastable, then the exit times will be typically smaller than the

decorrelation times, and the algorithm will rarely proceed to the dephasing

and parallel steps.

The algorithm is consistent even if some or all the states are not

metastable. Indeed, the states can be any collection of disjoint sets. How-

ever, if these sets are not reasonably defined, it will be difficult to obtain

any gain in efficiency with ParRep. Defining the states requires some a priori

knowledge about the system.

4 Mathematical Analysis of Discrete Time ParRep

The main result of this section, Proposition 4.5, shows that the coarse-grained trajectory

simulated in ParRep is exact if the QSD has been exactly reached in the decorrelation

and dephasing steps; see Equation (7).
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4.1 Properties of QSDs

Before examining ParRep, we give a condition for existence and uniqueness of the QSD.

We also state important properties of the exit law starting from the QSD. Many of these

results can be found in [8, 9]. We assume the following, which is sufficient to ensure

existence and uniqueness of the QSD.

Assumption 4.1. Let S ∈ S be any state.

(1) For any x ∈ S, P
x(X1 ∈ S) > 0.

(2) There exist m ≥ 1 and δ ∈ (0, 1), such that for all x, y∈ S and all

bounded nonnegative measurable functions f : S → R, E
x[ f(Xm) 1{τ>m}] ≥

δE
y[ f(Xm)1{τ>m}]. �

With this condition, the following holds (see [10, Theorem 1]).

Theorem 4.2. Under Assumption 4.1, there exists a unique QSD ν in S. Furthermore,

for any probability measure μ with support in S and any bounded measurable function

f : S → R,

∣∣∣∣Eμ[ f(Xn) | τ > n] −
∫

S
f(x) ν(dx)

∣∣∣∣ ≤ ‖ f‖∞4δ−1(1 − δ2)n/m�. (6)

�

Theorem 4.2 shows that the law of (Xn)n≥0, conditioned on not exiting S, con-

verges in total variation norm to the QSD ν as n→ ∞. Thus, at the end of the decorre-

lation and dephasing steps, if Tcorr and Tphase are sufficiently large, then the law of the

reference process and replicas will be close to that of the QSD. Note that Theorem 4.2

provides an explicit error bound in total variation norm.

Next we state properties of the exit law starting from the QSD which are essen-

tial to our analysis. While these results are well known (see, for instance, [8, 9]), we give

brief proofs for completeness.

Theorem 4.3. If X0 ∼ ν, with ν the QSD in S, then τ and Xτ are independent, and τ is

geometrically distributed with parameter p= P
ν(X1 /∈ S). �

 at U
 C

olorado L
ibrary on July 8, 2016

http://am
rx.oxfordjournals.org/

D
ow

nloaded from
 

http://amrx.oxfordjournals.org/


ParRep for Simulating Markov Chains 341

Proof. Let k(x, dy) denote the transition kernel of (Xn)n≥0. We compute

E
ν [ f(Xτ ) | τ = n] = E

ν [ f(Xn) 1{τ=n}]
Eν [1{τ=n}]

=
E

ν [1{τ>n−1}
∫
Ω\S f(y)k(Xn−1, dy)]

Eν [1{τ>n−1}
∫
Ω\S k(Xn−1, dy)]

=
E

ν [
∫
Ω\S f(y)k(Xn−1, dy) | τ > n− 1]

Eν [
∫
Ω\S k(Xn−1, dy) | τ > n− 1]

=
∫

S(
∫
Ω\S f(y)k(x, dy))ν(dx)∫

S(
∫
Ω\S k(x, dy))ν(dx)

= E
ν [ f(Xτ ) | τ = 1].

The second to last equality is an application of (1). As E
ν [ f(Xτ ) | τ = 1] is independent of

n, this establishes independence of τ and Xτ .

Concerning the distribution of τ , we first calculate

P
ν(τ > n) = P

ν(τ > n|τ > n− 1)Pν(τ > n− 1),

and then again use (1):

P
ν(τ > n|τ > n− 1) = E

ν [1{τ>n}]
Pν(τ > n− 1)

= E
ν [1{τ>n−1}

∫
S k(Xn−1, dy)]

Pν(τ > n− 1)

= E
ν

[∫
S

k(Xn−1, dy) | τ > n− 1
]

=
∫

S

(∫
S

k(x, dy)

)
ν(dx) = P

ν(X1 ∈ S).

Thus, P(τ ν > n) = P(Xν
1 ∈ S)P(τ ν > n− 1) and by induction, P

ν(τ > n) = [Pν

(X1 ∈ S)]n = (1 − p)n. �

4.2 Analysis of the exit event

We can now state and prove our main result. We make the following idealizing assump-

tion, which allows us to focus on the parallel step in Algorithm 3.1, neglecting the errors

due to imperfect sampling of the QSD.

Idealization 4.4. Assume that

(A1) After spending Tcorr consecutive time steps in S, the process (Xn)n≥0 is

exactly distributed according to the QSD ν in S. In particular, at the end of

the decorrelation step, Xref
Tsim

∼ ν.

(A2) At the end of the dephasing step, all N replicas are i.i.d. with law exactly

given by ν. �
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Idealization 4.4 is introduced in view of Theorem 4.2, which ensures that the

QSD sampling error from the dephasing and decorrelation steps vanishes as Tcorr and

Tphase become large. Of course, for finite Tcorr and Tphase, there is a nonzero error; this

error will indeed propagate in time, but it can be controlled in terms of these two

parameters. For a detailed analysis in the continuous time case, see [16, 27]. Although

the arguments in [16, 27] could be adapted to our time discrete setting, we do not go in

this direction; instead we focus on showing consistency of the parallel step.

Under Idealization 4.4, we show that ParRep is exact. That is, the trajectory

generated by ParRep has the same probability law as the true coarse-grained chain:

(X̂n)n≥0 ∼ (Π(Xn))n≥0. (7)

The evolution of the ParRep coarse-grained trajectory is exact in the decorrelation step.

Together with Idealization 4.4, this means (7) holds if the parallel step is consistent

(i.e., exact, if all replicas start at i.i.d. samples of the QSD). This is the content of the

following proposition.

Proposition 4.5. Assume that the N replicas at the beginning of the parallel step are

i.i.d. with law exactly given by the QSD ν in S (this is Idealization 4.4(A2)). Then the

parallel step of Algorithm 3.1 is exact:

(Xacc, Tacc) ∼ (Xτ , τ),

where (Xacc, Tacc) is defined as in Algorithm 3.1, while (Xτ , τ) is defined for (Xn)n≥0 start-

ing at X0 ∼ ν. �

To prove Proposition 4.5, we need the following lemma.

Lemma 4.6. Let τ 1, τ 2, . . . , τ N be i.i.d. geometric random variables with parameter p: for

t ∈ N ∪ {0},
P(τ j > t) = (1 − p)t.

Define

M = min{m ≥ 1 : ∃ j ∈ {1, . . . , N} s.t. τ j ≤ mTpoll},
K = min{ j ∈ {1, . . . , N} : τ j ≤ MTpoll},
ξ = (N − 1)(M − 1)Tpoll + (K − 1)Tpoll + τ K .

Then ξ has the same law as τ 1. �
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Proof. Note that ξ can be rewritten as

ξ = N(M − 1)Tpoll + (K − 1)Tpoll + [τ K − (M − 1)Tpoll].

Indeed, any natural number z can be uniquely expressed as z= N(m − 1)Tpoll +
(k − 1)Tpoll + t where m ∈ N \ {0}, k∈ {1, . . . , N}, and t ∈ {1, 2, . . . , Tpoll}. For such m, k, and

t, we compute

P(ξ = N(m − 1)Tpoll + (k − 1)Tpoll + t)

= P(M = m, K = k, τ K − (M − 1)Tpoll = t)

= P(τ 1 > mTpoll, . . . , τ k−1 > mTpoll, τ
k = (m − 1)Tpoll

+ t, τ k+1 > (m − 1)Tpoll, . . . , τ N > (m − 1)Tpoll)

= P(τ 1 > mTpoll)
k−1

P(τ k = (m − 1)Tpoll + t)[P(τ k+1 > (m − 1)Tpoll)]
N−k

= (1 − p)(k−1)mTpoll p(1 − p)(m−1)Tpoll+t−1(1 − p)(N−k)(m−1)Tpoll

= p(1 − p)N(m−1)Tpoll+(k−1)Tpoll+t−1 = P(τ 1 = N(m − 1)Tpoll + (k − 1)Tpoll + t).
�

We can now proceed to the proof of Proposition 4.5.

Proof. In light of Theorem 4.3, it suffices to prove:

(i) Tacc is a geometric random variable with parameter p= P
ν(X1 /∈ S),

(ii) Xacc and Xτ have the same law: Xacc ∼ Xτ , and

(iii) Tacc is independent of Xacc,

where (Xn)n≥0 is the process starting at the X0 ∼ ν.

We first prove (i). For j ∈ {1, 2, . . . , N}, let τ j be a random variable representing the

first exit time from S of the jth replica in the parallel step of ParRep, if the replica were

allowed to keep evolving indefinitely. By (A2), τ 1, . . . , τ N are independent and all have

the same distribution as τ . Now by Theorem 4.3, τ 1, . . . , τ N are i.i.d. geometric random

variables with parameter p, so by Lemma 4.6, Tacc is also a geometric random variable

with parameter p.

Now we turn to (ii) and (iii). Note that K = k if and only if Xacc = Xk
τ k and

there exists m ∈ N such that τ 1 > mTpoll, . . . , τ k−1 > mTpoll, (m − 1)Tpoll < τ k ≤ mTpoll, and

τ k+1 > (m − 1)Tpoll, . . . , τ N > (m − 1)Tpoll. From Theorem 4.3 and (A2), Xk
τ k is independent

of τ 1, . . . , τ N , so Xacc must be independent of K. From this and (A2), it follows that

Xacc ∼ Xτ . To see that Xacc is independent of Tacc, let σ(K, τ K) be the sigma algebra gener-

ated by K and τ K . Knowing the value of K and τ K is enough to deduce the value of Tacc;
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that is, Tacc is σ(K, τ K)-measurable. Also, by the preceding analysis and Theorem 4.3,

Xacc = XK
τ K is independent of σ(K, τ K). To conclude that Tacc and Xacc are independent,

we compute for suitable test functions f and g:

E[ f(Tacc)g(Xacc)] = E[E[ f(Tacc)g(Xacc) | σ(K, τ K)]]

= E[ f(Tacc)E[g(Xacc) | σ(K, τ K)]] = E[ f(Tacc)] E[g(Xacc)]. �

5 Numerical Examples

In this section, we consider two examples. The first illustrates numerically the fact that

the parallel step in Algorithm 3.1 is consistent. The second shows typical errors result-

ing from a naive application of the original ParRep algorithm to a time discretization

of Langevin dynamics. These are simple illustrative numerical examples. For a more

advanced application, we refer the reader to the paper [3], where our Algorithm 3.1 was

used to study the 2D Lennard–Jones cluster of seven atoms.

5.1 One-dimensional random walk

Consider a random walk on Z with transition probabilities p(i, j) defined as follows:

p(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
4 , i < 0 and j = i + 1,

1
4 , i < 0 and j = i − 1,

1
3 , i = 0 and | j| ≤ 1,

1
4 , i > 0 and j = i + 1,

3
4 , i > 0 and j = i − 1,

0, otherwise.

We use ParRep to simulate the first exit time τ of the random walk from S = [−5, 5],

starting from the QSD ν in S. At each point except 0, steps toward 0 are more likely than

steps toward the boundaries −5 or 5.

We perform this simulation by using the dephasing and parallel steps of

Algorithm 3.1; for sufficiently large Tphase, the accelerated time Tacc should have the

same law as τ . In this simple example, we can analytically compute the distribution

of τ . We perform 106 independent ParRep simulations to obtain statistics on the distri-

bution of Tacc and the gain in “wall clock time”, defined below. We find that Tacc and τ

have very close probability mass functions when Tphase = 25; see Figure 3. To measure
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Fig. 3. Probability mass function of Tacc, estimated by 106 ParRep simulations with N = 10 repli-

cas and Tphase = Tcorr = 25, versus exact distribution of τ (smooth curve).

the gain in wall clock efficiency using ParRep, we introduce the parallel time Tpar—

defined, using the notation of Algorithm 3.1, by Tpar = MTpoll, where we recall M is such

that τ K ∈ [(M − 1)Tpoll + 1, MTpoll]. Thus, the wall clock time of the parallel step is C0Tpar,

with C0 the computational cost of a single time step of the Markov chain for one replica.

Note in Figure 4 the significant parallel time speedup in ParRep compared with the

direct sampling time. The speedup is approximately linear in N.

5.2 Discretized diffusions

Consider the overdamped Langevin stochastic process in R
d,

dX̃t = −∇V(X̃t) dt +
√

2β−1 dWt. (8)

The associated Euler–Maruyama discretization is

Xn+1 = Xn − ∇V(Xn)Δt +
√

2β−1Δtξn, (9)

where ξn ∼ N(0, I ) are d-dimensional i.i.d. random variables. It is well known [14] that

(Xn)n≥0 is then an approximation of (X̃nΔt)n≥0.
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Fig. 4. Cumulative distribution function of parallel time required for ParRep sampling with

Tpoll = 10 and, from top: N = 100, 25, 10. The bottom curve is the (analytic) cumulative distribu-

tion function of τ (corresponding to N = 1).

5.2.1 Existence and uniqueness of the QSD

We first show that the conditions in Assumption 4.1 hold (see [10] for a similar example

in 1D).

Proposition 5.1. Assume that S ⊂ R
d is bounded and ∇V is bounded on S. Then (9) sat-

isfies Assumption 4.1. �

Proof. First, for any x ∈ S,

P
x(X1 ∈ S) = E

x[1S(X1)] = (4πβ−1Δt)−d/2
∫

Rd
1S(y) exp

{
−|y − x + ∇V(x)Δt|2

4β−1Δt

}
dy

≥ |S|(4πβ−1Δt)−d/2 min
y∈S

{
exp

{
−|y − x + ∇V(x)Δt|2

4β−1Δt

}}
> 0. (10)
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Next, for any x, y∈ S,

E
x[ f(X1)1{τ>1}] = (4πβ−1Δt)−d/2

∫
S

f(z) exp
{
−|z − x + ∇V(x)Δt|2

4β−1Δt

}
dz

= (4πβ−1Δt)−d/2
∫

S
f(z) exp

{
−|z − y + ∇V(y)Δt|2

4β−1Δt

}

× exp
{
−|z − x + ∇V(x)Δt|2 − |z − y + ∇V(y)Δt|2

4β−1Δt

}
dz

≥ C (4πβ−1Δt)−d/2
∫

S
f(z) exp

{
−|z − y + ∇V(y)Δt|2

4β−1Δt

}
dz

= C (4πβ−1Δt)−d/2
E

y[ f(X1)1{τ>1}], (11)

where

C = min
x,y,z∈S

exp
{
−|z − x + ∇V(x)Δt|2 − |z − y + ∇V(y)Δt|2

4β−1Δt

}
.

Since S is bounded and terms in the brackets are bounded, C > 0. In Assumption 4.1, we

can then take m = 1 and δ = C (4πβ−1Δt)−d/2. �

Theorem 4.2 ensures that (Xn)n≥0 converges to a unique QSD in S, with a precise

error estimate in terms of the parameters m and δ obtained in the proof of Proposi-

tion 5.1. This error estimate is certainly not sharp; better estimates can be obtained by

studying the spectral properties of the Markov kernel. We refer the reader to [16] for

such convergence results in the continuous time case (8).

5.2.2 Numerical example

Here we consider the 1D process

dX̃t = −2π sin(π X̃t) dt +
√

2 dWt, (12)

discretized with Δt = 10−2. We compute the first exit time from S = (−1, 1), starting at

X̃0 = 1
2 . We use Algorithm 3.1 with Tcorr = Tphase = 100, corresponding to the physical time

scale TcorrΔt = TphaseΔt = 1, and N = 1, 000 replicas.

Consider a direct implementation of the continuous time ParRep algorithm into

the time discretized process. In that algorithm, the accelerated time is (in units of phys-

ical time instead of time steps)

Tcontinuous
acc = Nτ KΔt, (13)

with τ K the same as in Algorithm 3.1. As Tcontinuous
acc is by construction a multiple of

NΔt = 10, a staircasing effect can be seen in the exit time distribution; see Figure 5.
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This staggering worsens as the number of replicas increases. In our Algorithm 3.1, we

use the accelerated time formula (again in units of physical time)

Tcorrected
acc = TaccΔt.

We find excellent agreement between the serial data—that is, the data obtained from

direct numerical simulation—and the data obtained from Algorithm 3.1; See Figure 5.

(The agreement is perfect in the decorrelation step; see Figure 6.) We comment further

on this in the next section.

5.2.3 Discussion

In light of the discretization example, one may ask what kind of errors were introduced

in previous numerical studies which used ParRep with (13). Taking Tpoll = 1 for simplic-

ity, we calculate

E[|Tcorrected
acc − Tcontinuous

acc |] = E[|(N(τ K − 1) + K)Δt − Nτ KΔt|]

= Δt E[|N − K|] = Δt
N∑

k=1

(N − k)P(K = k).

Using calculations analogous to those used to study Tacc, it can be shown that

P(K = k) = (1 − p)k−1 p

1 − (1 − p)N
.

Therefore, the error in the number of time steps per parallel step is

Absolute Error = NΔt

1 − (1 − p)N
− Δt

p
, Relative Error = pN

1 − (1 − p)N
− 1. (14)

Consider the relative error, writing it as

pN
[

1

1 − rN
− 1

(1 − r)N

]
where r = 1 − p.

We claim the quantity in the brackets,

f(r, N) := 1

1 − rN
− 1

(1 − r)N
= rN − Nr + N − 1

NrN+1 − NrN − Nr + N
(15)

is bounded from above by 1. Indeed, for any 0 < r < 1, we immediately see that f(r, N)

is 0 at N = 1 and 1 as N → ∞. Let us reason by contradiction and assume that

supr∈(0,1),N>0 f(r, N) > 1. Since f is continuous in N > 0 and 0 < r < 1, there is then a point
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Fig. 5. Exit time distributions for the Euler–Maruyama discretization of (12). Here T repre-

sents the first exit time from S = (−1, 1), starting at 1
2 . There is excellent agreement between

the serial, unaccelerated simulation data (T = τνΔt), and our ParRep algorithm (T = Tcorrected
acc ),

while the original ParRep formula (T = Tcontinuous
acc ) deviates significantly. Dotted lines represent

95% Clopper–Pearson confidence intervals obtained from 106 independent simulations; confidence

interval widths increase in t as fewer samples are available.

(r, N) such that f(r, N) = 1; thus

gN(r) = 0 where gN(r) := NrN+1 − (N + 1)rN + 1.

Note that gN(0) = 1 and gN(1) = 0 for all values of N. Computing the derivative with

respect to r, we observe

g′
N(r) = −N(N + 1)(1 − r)rN−1 < 0.

Therefore, gN(r) is decreasing, from 1 at r = 0 to 0 at r = 1, in the interval (0, 1).

Hence, gN(r) = 0 has no solution, contradiction. We conclude that (15) is bounded from

above by 1.

Consequently, we are assured

Absolute Error ≤ NΔt, Relative Error ≤ pN. (16)
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Fig. 6. A zoomed-in version of Figure 5, highlighting the decorrelation step (recall TcorrΔt = 1).

Serial simulation, our ParRep algorithm, and the original ParRep algorithm all produce identical

data. This comes from the fact that serial and ParRep simulations are identical in law during the

decorrelation step.

Thus, so long as pN � 1, the relative error using the accelerated time Tcontinuous
acc will

be modest, especially for very metastable states where p� 1. If also NΔt � 1, then the

absolute error will be small.

The above calculations are generic. Although our discretized diffusion example

in Section 5.2.2 is a simple 1D problem, the errors displayed in Figure 5 are expected

whenever the continuous time ParRep rule (13) is used for a time discretized process.

Although this error (as we showed above) will be small provided Np� 1 and NΔt � 1,

our Algorithm 3.1 has the advantage of being consistent for any Δt, including relatively

large values of NΔt.
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