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Abstract. We give a mathematical framework for exact milestoning, a recently introduced
algorithm for mapping a continuous time stochastic process into a Markov chain or semi-Markov
process that can be efficiently simulated and analyzed. We generalize the setting of exact milestoning
and give explicit error bounds for the error in the milestoning equation for mean first passage times.
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1. Introduction. Molecular dynamics (MD) simulations, in which classical
equations of motions are solved for molecular systems of significant complexity, have
proven useful for interpreting and understanding many chemical and biological phe-
nomena (for textbooks, see [47, 24, 3]). However, a significant limitation of MD is
that of time scales. Many molecular processes of interest occur on time scales sig-
nificantly longer than the temporal scales accessible to straightforward simulations.
For example, permeation of molecules through membranes can take hours [9], while
MD is usually restricted to a scale of microseconds. One approach to extending
simulation times is to use faster hardware [48, 49, 45]. Other approaches focus on
developing theories and algorithms for long-time phenomena. Most of the emphasis
has been on methodologies for activated processes with a single dominant barrier, as
in transition path sampling [16, 7, 15]. Approaches for dynamics on rough energy
landscapes, and for more general and/or diffusive dynamics, have also been devel-
oped [41, 46, 14, 50, 43]. The techniques of exact milestoning [5] and milestoning [22]
belong to the last category. They are theories and algorithms for accelerating tra-
jectory calculations of kinetics and thermodynamics in complex molecular systems.
The acceleration is based on the use of a large number of short trajectories instead of
complete trajectories between reactants and products (Figure 1). The simulation of
short trajectories is trivial to implement in parallel, making the formulation efficient
to use on modern computing resources. Moreover, the use of short trajectories makes
it possible to enhance sampling of improbable but important events by initiating the
short trajectories near bottlenecks of reactions. A challenge is how to start the short
trajectories, and how to analyze the result to obtain correct long-time behavior.

While milestoning is an approximate procedure, it shares the same philosophy
and core algorithm as the exact milestoning approach. In both algorithms the phase
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F1G. 1. Representation of the state space 2 and the milestones. Each milestone is one of the
line segments traced by dashed grey lines. The reactant state R is highlighted as a square dot in the
bottom-left corner, while the product state P is comprised of the two line segments shown in blue in
the upper-right corner. A particular realization of a long trajectory appears as a continuous black
line, and the corresponding values of (Jn) are marked with dots.

space () is partitioned by hypersurfaces, which we call milestones M C €, into cells.
The short trajectories are initiated on milestones and are terminated the first time
they reach a neighboring milestone (Figure 1). The short trajectories can be simulated
in parallel.

Milestoning uses an approximate distribution for the initial conditions of the tra-
jectories at the hypersurfaces. The results are then analyzed within the milestoning
theory. The approximation is typically the (normalized) canonical distribution re-
stricted to the milestone interface M. In exact milestoning the distribution of hitting
points at the interface is estimated numerically by iteratively computing trajectory
fragments between milestones. In a straightforward implementation of the iterations
(see also [5]) the final phase points of trajectories that were terminated on one mile-
stone are continued until they hit another milestone. This type of trajectory con-
tinuation procedure is also used in nonequilibrium umbrella sampling (NEUS) [55]
and trajectory tilting [53]. The continuation does not mean that full trajectories
from reactants to products are computed. The calculations stop when the stationary
distribution at the interface, or observables of interest, converge. In practice, and
depending of course on the initial guess, the calculation ends significantly earlier than
does computation of complete trajectories from R to P. The fast convergence of the
iterations leads to significant computational savings.

A number of other algorithms build on the use of short trajectories to estimate
long-time kinetics by “patching” these short trajectories at milestones or interfaces.
These technologies include the weighted ensemble (WE) [57, 32], transition interface
sampling (TIS) [52], partial path transition interface sampling (PPTIS) [43], forward
flux sampling (FFS) [2], NEUS [55], trajectory tilting [53], and boxed molecular dy-
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namics (BMD) [25]. Some of these techniques are similar; however, many subtle
differences remain. Some of the differences are as follows. WE is the only method
that makes it necessary to use stochastic dynamics. The trajectory sampling in NEUS,
trajectory tilting, and exact milestoning is similar, even though the theories are quite
different. Exact milestoning allows for the calculations of all the moments of the
first passage time [5], a result which is not available for other technologies. BMD,
milestoning, and PPTIS are approximate methods leading to greater efficiency. TIS,
PPTIS, FFS, and BMD are focused on one-dimensional reaction coordinates. Other
technologies (e.g., WE, milestoning, NEUS, and trajectory tilting) focus on a space
of one or several coarse variables.

Hence, the overall scopes of these techniques differ significantly, which makes
direct comparison between them less obvious. We have compared in the past the
accuracy and efficiency of the methods of milestoning and exact milestoning with that
of forward flux [5, 10]. Forward flux is one of the closest algorithms (in one dimension)
to milestoning and exact milestoning. Numerous examples of kinetics of molecular
systems studied with milestoning have been published [9, 11, 36, 34, 38, 21, 20, 56, 19].
We have also discussed extensively the features of alternate technologies that exploit
trajectory fragments [56, 40].

The milestoning theory has not yet been subject to rigorous mathematical analy-
sis, which is the goal of the present manuscript. In this manuscript we show that the
exact milestoning method can be derived and analyzed in the framework of probabil-
ity theory. The result is a useful link between physical intuition and a more formal
approach. Readers that are interested in the efficiency of the algorithm on concrete
examples, and comparison to other technologies, are referred to the sources mentioned
in the previous paragraph.

This article is organized as follows. In section 2, we describe the setting for exact
milestoning and introduce notation used throughout. In section 3, we show existence
of and convergence to a stationary flux under very general conditions. In section 4
we precisely state the exact milestoning algorithm [5]. In section 5, we establish
conditions under which convergence to the stationary flux is consistent in the presence
of numerical error (Lemma 5.2 and Theorem 5.3), and we give a natural upper bound
for the numerical error arising in exact milestoning (Theorem 5.4). Finally, in section 6
we consider some instructive examples.

2. Setup and notation.

2.1. The dynamics and MFPT. In milestoning we spatially coarse-grain a
dynamics (X;). The basic idea is to stop and start trajectories on certain interfaces,
called milestones, and then reconstruct functions of (X;) using these short trajectories,
which can be efficiently simulated in parallel. We assume here that the dynamics is
stochastic and focus on using milestoning for the efficient computation of mean first
passage times (MFPTs) of (X;), although similar ideas can be used to compute other
nonequilibrium quantities.

To make our arguments we need some assumptions on (X;). We let (X;) be a time
homogeneous strong Markov process with cadlag paths taking values in a standard
Borel space €. These assumptions allow us to stop and restart (X;) on the milestones
without knowing its history. In applications, (X;) may be Langevin or overdamped
Langevin dynamics, and 2 may be a subset of Euclidean space.

We write P, E for all probability measures and expectations, with superscripts
P? (resp., P¢) to indicate a starting point z (resp., distribution £). The symbol ~
will indicate equality in probability law. We will use the words distribution and
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probability measure interchangeably. Total variation norm will be denoted by || - ||y .
Our analysis below will mostly take place in an idealized setting where we assume
infinite sampling on the milestones. In this setting, distributions are smooth (if state
space is continuous), and the total variation norm is the appropriate one.

Recall that we are interested in computing the MFPT of (X;) from a reactant set
R to a product set P. Throughout we consider fixed disjoint product and reactant sets
P,R C Q. When R is not a single point, we will start (X;) from a fixed probability
measure p on R. If R is a single point, p = Jg, the delta distribution at R. As
discussed above, milestoning allows for an efficient computation of the MFPT of (X})
to P, starting at p. It is useful to think of P as a sink and R as a source for (X).
More precisely, we assume that when (X;) reaches P, it immediately restarts on R
according to p. Obviously, this assumption has no effect on the MFPT to P. It will
be useful, however, for computational and theoretical considerations.

Many of the results below follow from well-known theorems in probability theory.
However, because of the special source-sink structure of (X;), simpler proofs are often
available, and we include them for clarity and completeness.

2.2. The milestones and semi-Markov viewpoint. We write M C Q for the
space of milestones used for parallelizing the computation of the MFPT. Each point
x € M belongs to a milestone M, C M. Thus, M is the union of all the milestones.
We assume there are finitely many milestones, each of which is a closed set. Moreover,
we demand that (X;) pass through the intersection of two milestones with probability
0—thus, (X¢) can cross only one milestone at a time. This can be accomplished for
Langevin or overdamped Langevin dynamics by taking the milestones to be codimen-
sion 1 with pairwise intersections of codimension 2 or larger; see Figure 1. The sets
P and R will be two of the milestones. We always start (X;) on M.

By following the sequence of milestones crossed by (X;), we obtain a sequence of
points (J,,) in M. See Figure 1. We now describe (.J,,) more precisely. Let 6,, be the
nth milestone crossing time for (X;), defined recursively by 6y = 0 and

if Xy, = x, then 6,11 :=inf{t > 0,, : X; € M, for some M, # M,}.

Note that by a milestone crossing we mean a crossing of a milestone different from
the previous one. The sequence of milestone crossing points is J,, = Xp,, .

We show now that (X;) can be partially reconstructed from (.J,,) and (,). Let
(Y;) be defined® by setting Y; = J,, whenever 6,, <t < 6,,1. Then (X;) and (Y;)
agree at each milestone crossing time ¢t = 6,, n = 0,1,2,..., and (Y;) is obtained
from (X;) by throwing away the path of (X;) between milestone crossings, keeping
only the endpoints. It follows that (X;) and (Y;) have the same MFPT to P. Thus,
for our purposes it is enough to study (Y;). We note that (Y3), like (X), immediately
restarts at p upon reaching P.

By our assumptions above, (J,) is a Markov chain on M, and (Y;) is a semi-
Markov process on M, meaning it has the Markov property at crossing times. We
write K(z,dy) for the transition kernel of (J,,). Thus, if the initial distribution of
(Jpn) is Jo ~ &, then the distribution at time n is P$(J, € -) = EK™. We also write
EK"f:=E8[f(Jn)] and £f := [, f(x)&(dx) for suitable functions f.

'When (Y;) has a probability density, it corresponds to the density p(z,t) from [5] for the last
milestone point passed.
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The following notation will be needed. For x € M, define local first passage times
Ty = inf{t > 0 : Y; € M, for some M, # M,}.

Thus, 73, is the first time for (¥;) to cross some milestone other than M,, starting at
Yy = z. In particular, if Xg _, = z, then 6,, ~ 6,1 + 71;. We also define 7p to be
the first time to cross P, and op the number of crossings before reaching P:

7p =inf{t >0 : Y; € P}, op =min{n >0 : J, € P}.

We are interested in E?[7p], the MFPT from p to P.
3. Invariant measure and MFPT.

3.1. Stationary distribution on the milestones. The MFPT will be esti-
mated via short trajectories between milestones. An important ingredient is the
correct starting distribution for these trajectories. Exact milestoning makes use of a
stationary flur of (X;) on the milestones, which corresponds? to the stationary dis-
tribution p of (J,). It is worth noting that milestoning can also be made exact by
choosing milestones as isocommittor surfaces [54]. The advantage of the formulation
here is that the milestones can be arbitrary.

Some assumption is required to guarantee the existence of a stationary flux. We
adopt the following sufficient condition, which we assume holds throughout:

E¢[rp] and E¢[op] are finite for all probability measures & on M.

This ensures that (Y;) reaches P in finite expected time and does not have an infinite
number of milestone crossings in finite time. The condition can be readily verified in
the standard settings for milestoning discussed above. Using this assumption and the
source-sink structure of the dynamics—mnamely, that (Y;) immediately restarts at p
upon reaching P—we show in Theorem 3.1 below that p exists.

THEOREM 3.1. (Jy,) has an invariant probability measure u defined by
op
() == E” lz Lig,.e -}1 Effop + 1)1,
n=0

where 1y;. ccy = 1 if Jo € C and otherwise 1;, ccy = 0.
Proof. Define v(-) =Ef [3277 /11, c.3], and observe that

v() =YY P(Jm € |lop=n)P(op=n)=Y P(J, €, ap>n).
n=0m=0 n=0

If CN R ={, by bounded convergence,

/M v(dr)K (2,C) =Y P’(Jus1 €C,op >n) = > P(J, € C, op >n) =v(C),

n=0 n=0

2Qur p is the same as the appropriately normalized stationary flux g in other milestoning papers.
We use p instead of g to emphasize that here it is a probability measure, not a density.
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where the second equality uses P?(Jy € C) =0 and J,41 ¢ R=op #n. If C C R,

/ v(dr)K (2,C) =Y PP(Jus1 €Crop=n)+ Y P’(Juy1 €C,op >n+1)
M

n=0 n=0

=p(C)—=PP(Jy € Cyop > 0)—|—Z]P’p(Jn €eCyop>n)=v(C). O

n=0

We will show below that (J,,) converges to p under appropriate conditions. In that
case u is unique, and we will call u the stationary distribution of (J,). A successful
application of exact milestoning will require some technique for sampling p. The
algorithm we present (Algorithm 1 below) is based on convergence of the distribution
of (J,) to u. We demonstrate two types of convergence in Theorems 3.4 and 3.5
below.

It is worth noting that the proof of Theorem 3.1 leads to a representation of
as a Neumann series, given in Corollary 3.2 below. The Neumann series is written in
terms of the transient kernel

K(z,dy), = ¢ P,

(3.1) K(x,dy) = {O cep

K (z,dy) corresponds to a version of (J,,) that is absorbed (killed) on P.
COROLLARY 3.2. We have

(3.2) lim

n— oo

= 0.
TV

n—1
v(M)™' > pK' —p
1=0

Proof. Recall that u = v/v(M), where

v(-) = iP”(Jn €-,0p>n)= ipf(".
n=0

n=0
Moreover,
n—1 . 00
(33) sup |v(M)™' Y pK'f — pf| <v(M)~™H Y P (op > i),
lf1<1 i=0 i=n
and the right-hand side of (3.3) is summable since by assumption E*[op] < oo. O

3.2. Milestoning equation for the MFPT. Equipped with an invariant mea-
sure p, we are now able to state the milestoning equation (3.4) for the MFPT. In exact
milestoning, this equation is used to efficiently compute the MFPT. The algorithm
is based on two principles: first, many trajectories can be simulated in parallel to
estimate 7}, for various x; and second, the stationary distribution p can be efficiently
estimated through a technique based on power iteration. See the right-hand side of
(3.4) below.

The gain in efficiency comes from the fact that the trajectories used to estimate
Ty, are much shorter than trajectories from R to P. Whether we can efficiently
sample p may depend somewhat on whether we have a good initial guess. When
(X:) is Langevin dynamics, we have found that in some cases the canonical Gibbs
distribution is a sufficiently good guess. See [5] and [6] for details and discussion.
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THEOREM 3.3. Let u be defined as above. Then p(P) > 0 and

(3.4) MHMM=AMMW%FW%M

Proof. The assumption E?[op] < oo shows that u(P) > 0. For any = € M,
E‘T[Tp] = / E”* [TP | YT}%{ = y] K(x,dy)
M

= / E” [Tf@ | Yoo = y] K(z,dy) —|—/ E* [TP — 7| Yoo = y] K (z,dy)
M M\P

= E*[r5,] + /M\P EY[rp|K (z, dy).

Thus,

Mw=MwHAW&mwwwmwm=wmwﬁmmmww,

and so
IWWFLMMWWFMHMM- 0

In section 4 below we present the exact milestoning algorithm (Algorithm 1)
recently used in [5] and [6]. The algorithm uses a technique which combines coarse-
graining and power iteration to sample p. Consistency of power iteration algorithms
is justified via Theorem 3.4 below. Though we emphasize that there is a range of
possibilities for sampling p (for example, algorithms based on (3.2) or (3.7) below),
we note that Algorithm 1 was shown to be efficient for computing the MFPT in the
entropic barrier example of [5] and the random energy landscapes example of [6].

3.3. Convergence to stationarity. In this section we justify the consistency
of power iteration—-based methods for sampling p by showing that £ K™ converges to i
in the total variation norm as n — oo. The theorem requires an extra assumption—
aperiodicity of (J,).

THEOREM 3.4. Suppose that (J,,) is aperiodic in the following sense:
(3.5) gcd{n>1:P(lop=n—-1)>0} =1,

where g.c.d. is the greatest common divisor. Then for all probability measures & on
M,

(3.6) Tim [PE(J € ) — pilry = lim €K7 — pllzy = 0.
In particular, p is unique.

Proof. We use a simple coupling argument. Let (H,) be an independent copy
of (Jy), and let Jy ~ & and Hy ~ p. For n > 0, let S,, (resp., T,,) be the times
at which (J,,) (resp., (Hy)) hit P for the (n + 1)st time. Then S,41 — Sy, n >0,
are i.i.d. random variables with finite expected value and nonlattice distribution, and
(Snt+1—=Sn)n>0 ~ (Tnt1—Tn)n>0. It follows that (S, — T3 )n>0 is a mean zero random
walk with nonlattice step distribution. Thus, its first time to hit 0 is finite almost

surely. So
¢:=inf{n>0:J,€P, H, € P}
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obeys P(¢ > n) — 0 as n — oco. Note that J,, ~ H, whenever { < n. Thus

|PS(J, € C) —P*(H, € C)| <2P(C > n).

Since p is stationary for (H,) we have P*(H,, € C) = u(C). Now
[P0 € ) = llzv = sup [PE(Ju € O) = u(C)] < 2P(C > m),
c

which establishes the convergence result. To see uniqueness, suppose £ is another
invariant probability measure for (J,); then the last display becomes £ — p|lry <
2P(¢ > n). Letting n — oo shows that & ~ p. 0

We now consider a class of problems where there is a smooth one-dimensional
reaction coordinate ¥ : @ — [0, 1] tracking progress of (X;) from R to P. In this
case Y|r =0, ¢¥|p = 1, the milestones My, ..., M, are disjoint level sets of ¢, and
R = My, P = M,,. Moreover (J,) can only hop between neighboring milestones,
unless J, € P. That is, if J,, € M; for i ¢ {1, m}, then J,11 € M;_1 or J, € M;11;
if J, € My, then J,11 € Ms; and if J, € M,,, then J,11 € M;. Suppose that
if J, € M; for i ¢ {1,m}, then J,,1 € M;_; with probability in (0,1). Then the
aperiodicity assumption (3.5) is satisfied if and only if m is odd. This is due to the
fact that, if Jy € My, then J,,—1 € M, and J,,+1 € M,, with positive probability,
and m and m 4+ 2 are coprime when m is odd. On the other hand, if m is even, then
the conclusion of Theorem 3.4 cannot hold. To see this, let m be even and suppose
that Jy is supported in an odd-indexed milestone. Then Js, is always supported
on an odd-indexed milestone, while Jo,11 is always supported on an even-indexed
milestone.

Theorem 3.4 requires aperiodicity of (J,,). Even when (J,) is not aperiodic, it
converges in a time-averaged sense, as we show in Theorem 3.5 below. This means
that problems in sampling p arising from aperiodicity can be managed by averaging
over time.

THEOREM 3.5. Let Jy ~ &, with & a probability measure on M. For bounded
measurable f: M — R,

n—1
. 1 a.s. _
(3.7) gﬁﬁgﬂM—Aﬁwzm
Proof. Let S, be the time at which (J,,) hits P for the (n + 1)st time, and define
Snt1
fo= Y. f().
i=Sn+1

Note that f,, n > 0, are i.i.d. Let k(n) = max{k : Sy < n}, and write

k(n)—1

1 n
Ofi—l—ﬁ Z f(Ji).

i=Sk(n)+1

n—1

1 1
EZf(Ji)ZEZf(Ji)+
1=0

=0

S|

i=

Since (J,,) hits P in finite time a.s., n — Sy(,) and Sp are finite a.s. Thus,
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Notice that R,, := Sj,+1 — Sn, n > 0, are i.i.d. with finite expectation and

Rot 4 Ripy-s _n=Sy _ Rot -+ Rin)
k(n) O k(n) '

By the previous two displays and the law of large numbers,

1= oy as Elfo] _
nl:n;oE;f(Ji) = ] Ellop + 1]~ Z]Ep = uf. 0

It is worth noting that an additional aperiodicity condition leads to a limit for the
distribution of Y;. More precisely, suppose that (3.5) holds and, for each © € M \ P
and y € M, P*(ry € -|J1 = y) is nonlattice. Then for any C' C M and p-a.e. z,

(3.8) lim P*(Y; € C) = %.
M

See [4] for details® and a proof.

4. Exact milestoning algorithm. We now describe in detail an algorithm
for sampling p and the MEPT E”[rp], used successfully in [5] and [6]. We assume
throughout this section that the conclusion of Theorem 3.4 holds. Let £ be an initial
guess for p. (If (X;) is Brownian or Langevin dynamics, we take £ to be the canonical
Gibbs distribution.) We write M;, i = 1,...,m, for the distinct milestones, so that
M =J", M;. The algorithm will produce approximations

(2)

RSN

¢ = pl

of . Let u(-n

: ) be the nonnormalized restriction of p™ to M;, and define

B 1] = ™) (Mi)_l/ ui" (d)E7 (73],

i

For C' C M; we will also use the notation

az(?)(c) = N(n_l)(Mi)_l/ ,uz(-nil)(da:) K(z,O).

i

Below we think of a!” ij ) and ,u as either distributions or densities. The az(;l) are
obtained from trajectory fragments between milestone crossings. A simple Monte
Carlo scheme for estimating these distributions is as follows. Let z1,...,z be i.i.d.
samples from the distribution ugnfl)/u(”_l)(Mi). Starting at each x, € M;, simulate
(X¢) until it crosses the next milestone, say at the point y, € M;. If we idealize by
assuming that the simulation of (X;) is done exactly, then by Chebyshev’s inequality,

L (n) (n) (2
(n) 1 Qg (©) — Ay (©)
P ( aij (€)= /CE;_;%(dy) > ) <

3When the right-hand side of (3.8) has a density, it is the same as the stationary probability
density p(z) in [5] for the last milestone point passed.
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where d, is the Dirac delta distribution at y. We therefore write, for y € M,

1A -
(4.1) af (1)~ 7 30 W),

where Sye is either some suitable approximation to the identity at y, or simply a delta

function at y,. Thus, in Algorithm 1 we think of al(»?) and p{" ") as either densities
(in the former case) or distributions (in the latter). The local mean first passage
times (i.e., the times between successive milestone crossings) are approximated by
the sample means

(n—1)

L
1 z
B ry] =~ ZZTI\f'
=1

It is important to realize that we do not need to store the full coordinates of each y,
in memory. Instead, it suffices to use a data-structure that keeps track of the pairs
(ye, M;). The actual coordinates of each point can be written to disk and read from
it as needed.

Algorithm 1. Exact milestoning algorithm.

Input: Milestones M = U;n:l M, initial guess &, and tolerance € > 0 for the absolute
error in the MFPT.

Output: Estimates for u, local MFPTs E#[1),], and overall MFPT E*[7p].
TO) « +oo0.
for alln=1,2,... do

for i =1 tom do
(n) (n—1)

Estimate a;;” and E* " [7ag].
) oo,
end for
Solve w'A = w7 (with A = (A!) € RZS™ and w = (wi, ..., wn) € RZ).

for j =1 tom do
M;n) < w GE?)'
end for
Normalize p(")-
T w(P) " EX ).
if [T —T("=1| < ¢ then
break
end if
end for
return (p™ Er" " 1], T™).

(n—1)

The eigenvalue problem in Algorithm 1 involves a stochastic matrix A € RT;™
that is sparse. Indeed, the ith row corresponds to milestone M; and may have only
as many nonzero entries as the number of neighboring milestones M;. In practice,
to solve the eigenvalue problem we can use efficient and accurate Krylov subspace
solvers [28] such as Arnoldi iteration [39] to obtain w without computing all the other
eigenvectors.

In Algorithm 1, if w; = 11"~V (M;) is used instead of the solution w to wA = w7,
then the algorithm approximates y by simple power iteration, u(™ = ¢K™. The reason
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for defining the weights as the solution to wTA = wT is practical: we have found that
it gives faster convergence of the iterations, at no apparent cost to accuracy. It can be
seen as a version of power iteration that uses coarse-graining. See [5, 6] for applications
of the algorithm in exact milestoning, and [28, 39] for related discussions.

Finally, we mention the fact that pseudorandom number generators (PRNGs)
can only produce a finite quantity of pseudorandom numbers. Once the maximum
is reached, the generators may silently reuse the previous random numbers in the
same order. It has been noted [13] that this phenomenon leads to unphysical artifacts
in simulations. The simplest approach to properly using PRNGs (and avoiding the
aforementioned artifacts altogether) consists of reseeding the generator from time to
time, obtaining the new seeds from high-quality entropy sources such as those available
in modern computer hardware (see [17, 33] for more details).

5. Error analysis.

5.1. Stationary distribution error. In practice, due to time discretization
error, we cannot generate trajectories exactly according to the transition kernel K.
Instead, we can generate trajectories according to a numerical approximation K.. We
investigate here whether such schemes are consistent, that is, whether powers of K.
of K converge to a distribution p. =~ u. We emphasize that, even though we account
for time discretization here, we still assume infinite sampling, and thus for a given
x € M, K. (z,dy) may be a continuous distribution. See section 5.2 below for related
remarks and a discussion of how time discretization errors affect the exact milestoning
estimate of the MFPT.

The following theorem, restated from [23], establishes consistency of power
iteration-based schemes when K. is sufficiently close to K and (J,) is geometri-
cally ergodic. We give natural conditions for geometric ergodicity in Lemma 5.2 and
Theorem 5.3 below.

THEOREM 5.1. Suppose that(J,) is geometrically ergodic: there exists k € (0,1)
such that
sup ||0, K" — ullry = O(K™).
zeM

Let {K.} be a family of stochastic kernels with Ko = K, assumed to act continuously
on the Banach space of bounded measurable functions on M with the sup norm, such
that

(5.1) lim sup [|[Kcf — Kf|loo =0.
flI<1

e—0 |

Then for each & € (k,1) there is a § > 0 such that, for each € € [0,0), K. has a
unique tnvariant probability measure pe, and

sup sup [0 K" — piel|rv = O(R"),
e<d €M

lim f[pe = v = 0.

We now give two sufficient conditions for the geometric ergodicity of (J,,). The
first condition is a uniform lower bound on the probability of reaching P in N steps
(Lemma 5.2). The second is a strong Feller condition (Theorem 5.3). The latter is a
very natural condition and is easy to verify in some cases, for instance when (X3) is
a nondegenerate diffusion and the milestones are sufficiently regular.
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LEMMA 5.2. Suppose that there exist A € (0,1) and N € N such that, for all
x €M, P*(Jy_1 € P)>AX>0. Then (J,) is geometrically ergodic:

sup |0, K™ — pl |7y < A7HA — M)/,
xeM
Proof. Let &1,&2 € P, consider the signed measure £ = & — &2, and compute

la K™ — &KV py = sup / / E(dy) KN (y, d2) £ (2)

If1<1

— sup / / £(dy) (K™ (y,d2) — Mpld=)) £(2)
M JM

If1<1

— sup / £(dy) / (KN (y,dz) — Ao(d=)) (2)

If1<1

(1 =) sup
|f\<1

| s \ (1= N1 - &llry-

The last line uses the fact that K~ (y,dz) — Ap(dz) is a positive measure. This shows
that K is a contraction mapping on P with contraction constant (1 — \). Observe
also that ||&1 K — & K||lry < ||&1 — &7y The result now follows from the contraction
mapping theorem. See, for instance, Theorem 6.40 of [18]. d

Note that the )\ in Lemma 5.2 is a quantity that can be estimated, at least in prin-
ciple, by running trajectories of (X;) starting at  which cross N — 1 milestones before
reaching P. However, this is likely impractical for the same reason direct estimation of
the MFPT is impractical—the trajectories would be too long. One alternative would
be to compute the probability P*(J4 _; € P) for the Markov chain (J*) on {1,...,m}
with transition matrix A, and use the minimum over i € {1,...,m} as a proxy for
A. Even without a practical way to estimate A, we believe the characterization of
Lemma 5.2 is useful for understanding the convergence rate.

Lemma 5.2 leads to the following condition for geometric ergodicity of (Jy,).

THEOREM 5.3. Suppose that M is compact and (J,,) is a strong Feller chain which
is aperiodic in the sense of (3.5). Then (J,) is geometrically ergodic.

Proof. Let € € (0, u(P)). By Theorem 3.4, for each x € M there is an N, € N
such that P*(J, € P) > € for all n > N,. Because (J,) is strong Feller, the map
x — P*(J, € P) is continuous. By the compactness of M, it follows that for any
A € (0,€) there is an N € N such that P¥(J, € P) > A forally € M andn > N — 1.
Lemma 5.2 now yields the result. d

5.2. MFPT error. As discussed above, (3.4) can be used to estimate the MFPT
E?[rp] by sampling p and local MFPTs 7%,. The error in this estimate has two sources.
First, in general we only have an approximation [ of y. The second source of error is
in the sampling of 7, due to the fact that we can only simulate a time discrete version
(Xps¢) of (X;). In Theorem 5.4 below we give an explicit formula for the numerical
error of the MFPT in terms of these two sources. We first need the following notation.
Let 7§, be the minimum of all nét > 0 such that the line segment between Xm;t and
X(n+1)6t intersects M, for some M, # M, and define

Bl = [ )L
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Theorem 5.4 below gives an expression for the error in the original milestoning as
well as in exact milestoning.

THEOREM 5.4. There exists a nonnegative function ¢ such that

|[EP[rp] — (P) "B [Fu)| < e |[n(P) T — (P)7Y

(5.2) L ’
+a(P)~ (callp — fill v + ¢(t))
where
c1 = EF ], cg := sup E¥[ry;].
rzeM

Proof. Note that

|E[7p] — A(P)"'E"[Far])] = |u(P) " E" [rar] — f(P) ™ EF 7]
< |u(P)"'EH[ra] — A(P)TEH [rad]|
+A(P) " E [rar] — (P) T EF ]|
+ | B(P) T E [rar] — A(P) T ER [7adl,
where we have written E#[ry/] := [, i(de)E*[77;]. We may write

¢(0t) = [E* 7] — B[]

for the term depending only on time stepping error. Note that

Eefr] - EPfry]| = \ [ wtasyeries - [ e

< (sup Ef[nﬂm) it — fllrv
xeM

Combining the last three expressions yields the result. d

Recall that in the above we have ignored errors from finite sampling. We now
discuss the implications of those errors. In the original milestoning, i is the canon-
ical Gibbs distribution on the milestones. In that setting, we can typically sample
independently from ji on the milestones. Thus, the central limit theorem implies that
the true error in the milestoning approximation of E”[7p] is bounded above with high
probability by the right-hand side of (5.2) plus a constant times 1/ VN, where N is
the number of samples. An analogous argument applies to exact milestoning if ji is
sampled by simple power iteration. For our coarse-grained version of power iteration
in Algorithm 1, however, we obtain samples of i which are not independent, and thus
a more detailed analysis would be required to determine the additional error from
finite sampling.

We do not analyze the time discretization error ¢(dt) and instead refer the reader
to [27] and references therein. Here we simply remark that, if (X3) is a diffusion pro-
cess, then under certain smoothness assumptions on the drift and diffusion coefficients
of (X;) and on M, we have ¢(5t) = 0(+/0t) when (X,,s;) is the standard Euler time
discretization with time step d¢. See [26] for details and proof. See also [8, 31] for
numerical schemes that mitigate time discretization error in the MFPTs.

6. Illustrative examples. In this section we discuss two examples of mileston-
ing to illustrate the method.
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F1G. 2. Graph of the Miiller—Brown potential energy function. The milestones are shown as
the overlaid line segments.

We consider the solution, (X;), of the Brownian dynamics equation,

(6.1) dX; = —VU(X;) dt + /28~ 1 dBy,
Xo ~ P

where U: Q — R is a smooth potential energy function, S > 0 is the inverse temper-

ature, and (By) is a standard Brownian motion.

6.1. Miiller-Brown potential. We begin with a system characterized by the
Miiller-Brown potential [44]. The energy function U: Q C R? — R is given by the
formula (see also the corresponding energy landscape in Figure 2)

U(ar, ) = —200 e @1-17=1022" _ 100 g=21°=10 (22-3)’
1706 % (2148) 411 (2144) (v2—§) - 4 (22-3)

+ 156% (z1+1)%+2 (z14+1) (22— 1)+ 75 (1‘2—1)2'

This system is a commonly used benchmark for numerical methods for obtaining
reaction rates.

We chose to partition € using a Voronoi tessellation (displayed in Figures 2 and 3)
generated from a set of points gathered by the method of locally updated planes [51].
However, any other set of points could have been chosen (as we shall discuss in the
next example). Figure 2 also shows our choice of reactant and product milestones.

For the numerical experiments to be detailed below, we solve the stochastic dif-
ferential equation in (6.1) using the Euler-Maruyama scheme [42] with a time step
length At = 107° at a temperature determined by f~! = 5. We use the number of
force evaluations as a measure of the computational cost of our methods, and we note
that the Euler—-Maruyama method requires one force evaluation per time step.

We compared two types of experiments that we now describe. The first exper-
iment consists of running Brownian dynamics trajectories started at the reactant
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Fic. 3. Milestones represented as line segments. Some of the milestones are labeled, and the
reactant is colored in green (lower right) while the product is shown in blue (upper left).

0.4

Stationary flux

Fi1Gc. 4. Phase space points in the empirical distributions of the stationary flur p for two
types of simulations: long trajectories using straightforward Brownian dynamics (left) and exact
malestoning (right). Despite the fact that the two types of simulations involved comparable amounts
of computational effort, we see that the sampling in exact milestoning is much more erhaustive.

milestone until they reach the product milestone. As soon as a trajectory reaches
the product, we initiate a new trajectory from the reactant milestone and so on. We
refer to these as long trajectories. In the second experiment we run exact milestoning,
starting the first iteration with exactly one phase space point at each of the milestones
along the reaction path. Next, we run ten short trajectories per milestone per itera-
tion. These short trajectories start at each milestone and stop whenever they reach
any neighboring milestone, as described in section 4.

Despite allowing the long trajectories to go on for approximately 2.5 x 10° force
evaluations, only seven reach the product milestone. This leads to a poor approx-
imation of the MFPT. By contrast, running the exact milestoning method for ap-
proximately 2 x 10° force evaluations, we obtain good estimates of the stationary
distribution p and the local MFPTs.

The values of p(M;) are displayed in Figures 4 and 5. The empirical distributions
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Fic. 5. Values of u(M;) at some of the milestones in the Muller—Brown potential. The values
correspond to the long trajectories (in red) and to exact milestoning (in blue), as discussed in
section 6.1. Not shown are the milestones other than M; for i = 0,...,7, where the sampling
obtained from the long trajectories is insufficient for comparison.
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Fic. 6. Empirical distributions of the stationary flux obtained by long trajectories (in red) and
ezact milestoning (in blue) corresponding to the system in section 6.1. Notice that the sampling of
the long trajectories is very sparse at the milestones close to the product.

corresponding to x4 on some of the milestones are shown in Figure 6.

Figures 4 and 5 illustrate the nonequilibrium nature of exact milestoning. The sta-
tionary distribution that we compute differs noticeably from the equilibrium (canon-
ical) distribution. Recall from Figures 2 and 3 that the reactant milestone, My, is
located at the lower-right minimum, while the product milestone, My, is at the global
minimum in the upper-left side of the graph. With this in mind, we see that trajecto-
ries initiated at My arrive at the intermediate minimum located close to the center of
the graph, and many of those trajectories return to the lower minimum, crossing M7
again. This results in high values of u(M;g) at the transition state, while the density
at My (the global minimum) is significantly lower. Equilibrium considerations, which
are inappropriate here, would suggest that most of the stationary density (and the
stationary probability) is concentrated at the global minimum and that the weight at
the transition state would be small.

6.2. Rough energy landscape. In this case, we present an example of mile-
stoning on the torus = R2?/Z2. For our computations, we consider a uniformly
spaced mesh of milestones with fixed product and reactant sets P, R; see Figure 7.
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€2

z1

Fi1G. 7. Diagram showing the reactant state (lower shaded square) and the product state (upper
shaded square) within the set of all milestones for the example in section 6.2. Each milestone is an
edge of one of the small squares in the diagram. (The total number of milestones has been decreased
to enhance visibility.)

We model a rough energy landscape by a potential energy function of the form

N N
(6.2) Ulrres) =Re 30 3z g, erithamtbans)
ki=—N ko=—N

where Re denotes the real part of a complex number and N € N is a constant that
tunes the ruggedness of the potential. Each coefficient zx, x, = @k ky + 10k 8, € Cis
determined by the random variables ax, , and by, x,, which are distributed according
to

¢, with probability %,

0, with probability 1,

with ¢ itself being a uniform random variable in the interval (—1,1). Since N is
fixed, a particular realization of the coefficients specified above completely determines
the potential energy function U. The graph of the canonical density of a potential
energy of the form discussed above is shown in Figure 8. Notice that this class of
energy functions generalizes the model for rough landscapes introduced by [58] and
that similar potential energy functions have been used to model Wigner glasses [1].

We carry out exact milestoning in this example by solving boundary value prob-
lems, as described in [6]. The resulting stationary density obtained after convergence
is shown in Figure 9.

It is interesting to note that it has been argued [54] that an optimal choice of
milestones would consist of using the level sets (also called isocommittors) of the
committor function. These surfaces (see Figure 10) are typically hard to compute in
practice, which makes the use of exact milestoning more appealing, as its results are
independent of how the milestones are set up.

7. Conclusions. The main goal of this manuscript is to present a rigorous math-
ematical derivation, based on probability theory, of exact milestoning. While the
theory of exact milestoning and accompanying numerical examples were discussed
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Fic. 8. Graph of the density of the canonical distribution corresponding to a rough energy
landscape with N =7 at temperature 3~1 = 1.

elsewhere [5, 6], the mathematical formulation in the earlier paper was not as rig-
orous as in this manuscript. Once this formulation is established, it opens the way
for further communication between chemical physicists and mathematicians, and it
bridges the gap between the communities for further development of an important
tool for computer simulation.

Exact milestoning belongs to a class of enhanced sampling methods for the cal-
culation of kinetics. Approaches most closely related to milestoning are NEUS [55]
and trajectory tilting [53]. The way in which trajectories are sampled is similar in
all of these methods; however, the theoretical frameworks are different. For example,
milestoning allows the calculation of all the moments of the first passage time (FPT)
distribution [5], and hence better estimates of the FPT can be constructed, a result
that was not reported for other methods.

It is not necessary in milestoning to establish or rely on metastability to esti-
mate the average transition time. From this perspective the method is different from
another exact approach—transition path sampling [16]— that exploits the short du-
ration of rare trajectories between metastable states. Exact milestoning makes the
sampled trajectories short by sampling trajectory fragments between boundaries of
phase space cells or milestones. The statistics of short trajectories between milestones
make it possible to investigate wide ranges of types of energy landscapes, which may
be corrugated or not, as illustrated in the two examples in this paper. We have shown
here that exact milestoning is both accurate and highly efficient.
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F1a. 9. Stationary density u on the rough energy landscape of section 6.2. The contour lines
are the level sets of U. There are 2 x 40 X 40 total milestones (shown as the segments in the overlaid

grid).
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F1G. 10. Isocommittor surfaces for the rough energy landscape discussed in section 6.2.
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It is important to emphasize that the choice of the milestones in exact milestoning
is arbitrary from a formal viewpoint. FEfficiency considerations suggest that it is
beneficial to select them following two criteria: (i) the milestones should be sufficiently
close in the kinetic sense to make the trajectories short, and (ii) milestones should be
chosen to make the number of iterations as small as possible. For example, the number
of iterations can be small if the system is close to equilibrium and the milestones
are expressed in a space of slow variables. Then an initial choice of the canonical
distribution is quite accurate.

We also note that the method of milestoning that was broadly used in the past
(e.g., [35]) is approximate and assumes local equilibrium within the milestones. While
corrections and further refinements were proposed [40, 30, 29], these approximations
cannot be made exact and are similar in spirit to the local equilibrium and lag time
approximations of Markov state models [14]. Nevertheless, these approximations can
be accurate with a proper choice of coarse variables. These types of approximations
are very useful as the system grows in complexity and size and exact calculations
become prohibitively expensive. Milestoning made it possible to investigate kinetics
of enzymes [37] and transport through membranes [12] in agreement with experimental
observations. These are systems of tens to hundreds of thousands of particles, and
with time scales of milliseconds. It will be of considerable interest to re-evaluate
these approximations for large systems with the method of exact milestoning. As the
efficiency of exact milestoning increases with faster hardware, we are breaking scale
barriers that were not previously accessible to atomically detailed simulations.
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