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This article introduces an advanced Koopman mode decomposition (KMD) technique – coined Featurized Koopman
Mode Decomposition (FKMD) – that uses time embedding and Mahalanobis scaling to enhance analysis and predic-
tion of high dimensional dynamical systems. The time embedding expands the observation space to better capture
underlying manifold structure, while the Mahalanobis scaling, applied to kernel or random Fourier features, adjusts
observations based on the system’s dynamics. This aids in featurizing KMD in cases where good features are not a
priori known. We find that the Mahalanobis scaling from FKMD can be used for effective dimensionality reduction of
alanine dipeptide data. We also show that FKMD improves predictions for a high-dimensional Lorenz attractor and a
cell signaling problem from cancer research.

I. INTRODUCTION

Koopman mode decomposition1,2 (KMD) has emerged as a
powerful tool for analyzing nonlinear dynamical systems. The
power of KMD comes from lifting the nonlinear dynamics
into a vector space of observation functions; the evolution on
this space is described the the linear Koopman operator3,4.
Through this trick, KMD can identify patterns and coherent
structures that evolve linearly in time.

KMD enables both quantitative predictions and qualitative
analysis of a system’s dynamics5,6. The basic framework for
nonlinear features was introduced by Williams et al5. Since
then, KMD has been kernelized7, integrated with control the-
ory8, sped up with random Fourier features9, used on time
delay embedded data10, viewed from the perspective of Gaus-
sian processes11, and imposed with physical constraints12.
KMD has been widely applied, including in infectious dis-
ease control4, video13, neuroscience14, fluid dynamics15–17,
molecular dynamics18,19, and climate science20. For further
reading on recent advances, challenges, and open problems in
data-driven Koopman-based analyses see21,22.

Kernel KMD, which uses kernel functions as features, is a
natural choice when good feature functions are unknown7,23.
The choice of kernel can have a large effect on the quality of
KMD. For example, the most commonly used kernels (e.g.,
Gaussian) are isotropic, leading to uninformative measures of
distance in high dimension. Artificial neural networks are nat-
ural competitors to KMD that can overcome this curse of di-
mensionality, but they cannot identify linearly evolving struc-
tures and require tuning over many hyperparameters.

We propose a novel method called Featurized Koopman
Mode Decomposition (FKMD). Our method featurizes KMD
by learning a Mahalanobis distance-based kernel24. This ker-
nel prioritizes the most dynamically important directions in

a)Author to whom correspondence should be addressed: aristoff@
colostate.edu

data, enforcing isotropic changes in space and time and po-
tentially mitigating the curse of dimensionality. This leads to
improvements over standard Gaussian kernel KMD.

FKMD includes three key ingredients: (i) a learned Maha-
lanobis distance-based kernel; (ii) a nonstandard time-delay
embedding; and (iii) an efficient implementation with ran-
dom Fourier features. Time delay embeddings10 and random
Fourier features9 have previously been used within the KMD
framework. To our knowledge, our featurization through the
learned Mahalanobis matrix is new.

Through experiments, we find that both the Mahalanobis
matrix and time delay embedding can be essential for robust
predictions. We find that our double time embedding – where
both the sample points and the features are embedded – is
more effective than typical embeddings in KMD. The Maha-
lanobis matrix integrates nicely with this embedding, finding
appropriate time correlation structure.

In sum, the contributions of this work are:

• We introduce a new method, FKMD, that encodes the
structure of time-embedded data in a Mahalanobis ma-
trix, leading to more effective KMD analysis and infer-
ence. We also show how to scale up to large datasets
with random Fourier features25,26.

• We illustrate the power of FKMD in high-dimensional
experiments. The first illustrates that FKMD improves
clustering for an alanine dipeptide trajectory. The sec-
ond shows that FKMD allows for accurate prediction of
a high-dimensional Lorenz attractor27 when the obser-
vations are low-dimensional and noisy. Our last exper-
iment uses cancer cell imaging to predict cell-signaling
patterns hours into the future.

OVERVIEW OF KOOPMAN MODE DECOMPOSITION

We consider a dynamical system in real Euclidean space,
with evolution map Fτ . Given the current state, x(t), the state
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TABLE I: Definitions of symbols used in this work.

Symbol Definition
x(t) system state at time t
x, x′ time embedded states, or sample points
g(x) 1×L real observation function

τ evolution time step, or lag
Fτ (x) evolution map at lag τ

Kτ (g) Koopman operator at lag τ

N number of samples
R number of features (R = N for kernel features)

x1, . . . ,xN time-embedded input sample sequence
y1, . . . ,yN time-embedded output sequence; yn = Fτ (xn)

ψ1(x), . . . ,ψR(x) scalar-valued feature functions
ψ =

[
ψ1 . . . ψR

]
1×R vector of feature functions

Ψx N×R input samples × features matrix
Ψy N×R output samples × features matrix
K R×R Koopman matrix in feature space
B R×L observation matrix in feature space

φm(x) scalar-valued Koopman eigenfunctions
v∗m 1×L Koopman modes
µm Koopman eigenvalues

λm = τ−1 log µm continuous-time Koopman eigenvalues
kM (x,x′) kernel function
M Mahalanobis matrix
I identity matrix

at time τ into the future is Fτ(x(t)). That is,

x(t + τ) = Fτ(x(t)). (1)

In realistic application problems, Fτ is typically a compli-
cated nonlinear function. However, there is a dual interpreta-
tion to equation (1) which is linear. For an observation func-
tion g(x) on the system states, the Koopman operator15,21,28

determines the observations at time τ in the future:

Kτ(g)(x) := g(Fτ(x)). (2)

While the linear framework does not remove the complex-
ity inherent in Fτ , it provides a starting point for globally lin-
ear techniques: we can do linear analysis in (2) without re-
sorting to local linearization of (1). From this point of view,
we can construct finite dimensional approximations of Kτ by
choosing a collection of feature functions 29 that are evaluated
at sample points.

To this end, we choose scalar-valued features

ψ(x) =
[
ψ1(x) . . . ψR(x)

]
,

and obtain a set of input and output sample points x1, . . . ,xN
and y1, . . . ,yN , where yn = Fτ(xn). From these we form N×
R matrices Ψx and Ψy whose rows are samples and columns
are features,

Ψx =

ψ1(x1) . . . ψR(x1)
...

...
ψ1(xN) . . . ψR(xN)

 (3)

and

Ψy =

ψ1(y1) . . . ψR(y1)
...

...
ψ1(yN) . . . ψR(yN)

 . (4)

A finite dimensional approximation, K, of the Koopman
operator should, up to estimation errors, satisfy

ΨxK =Ψy. (5)

Here K is a R×R matrix, and this is a linear system that can
be solved with standard methods like ridge regression. We
think ofK as acting in the feature space.

If g is a 1×L vector-valued function, we also express g in
feature space coordinates as a R×L matrixB:

ΨxB =

g(x1)
...

g(xN)

 . (6)

Note that (6) can be solved in the same manner as (5).
Koopman mode decomposition converts an eigendecompo-

sition of K back to the sample space, in order to interpret
and/or predict the dynamics defined by Fτ . To this end, write
the eigendecomposition ofK as

K =
R

∑
m=1

µmξmw
∗
m, (7)

where µm are the eigenvalues of K, and ξm, wm are the right
and left eigenvectors, respectively, scaled so that w∗mξm = 1.
That is,Kξm = µmξm andw∗mK = µmw

∗
m. By converting this

to sample space, it can be shown that5

Kτ(g)(x)≈
R

∑
m=1

eτλmφm(x)v
∗
m, (8)

with eτλm = µm the Koopman eigenvalues, φm(x) = ψ(x)ξm
the Koopman eigenfunctions, and v∗m = w∗mB the Koopman
modes. The right hand side of (8) is a finite dimensional ap-
proximation of the Koopman operator. See Appendix A for a
derivation of equation (8).

With the Koopman eigenvalues, Koopman eigenfunctions,
and Koopman modes in hand, equation (8) can be used to pre-
dict observations of the system at future times, as well as an-
alyze qualitative behavior. There has been much work in this
direction; we will not give a complete review, but refer to5,30

for the basic ideas and to18–20,31–33 for recent applications and
extensions. Of course, the quality of the approximation in (8)
is sensitive to the choice of features and sample space. With
enough features and samples, actual equality in (8) can be ap-
proached30. In realistic applications, samples and features are
limited by computational constraints.

II. METHODS

A. Overview

We make two data-driven choices which can give remark-
ably good results on complex systems. These choices are:
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(i) We learn a linear map x→M 1/2x to help define fea-
tures. The Mahalanobis matrix, M , is updated itera-
tively and reflects the underlying system’s dynamics.

(ii) We use a a double time embedded structure to construct
feature space. Both the sample points xn and the fea-
tures ψm are time embedded – that is, both are defined
using a time sequence.

Our features are based on kernels20,33. Kernel features are a
common choice when good feature functions are not a priori
known. The kernels are centered around the sample points,

ψm(x) = kM (x,xm), m = 1, . . . ,R. (9)

Here, R = N and kM is the kernel function

kM (x,x′) = exp
[
−(x−x′)∗M(x−x′)

]
. (10)

We also use random Fourier features that estimate these ker-
nels, allowing for larger sample size N; see Section II F.

B. Mahalanobis matrix

Inspired by the recent work24 on understanding neural net-
works and improving kernel methods, we target a matrix M
using a gradient outer product structure24,34,35. Up to a scalar
bandwidth factor, we use

M =
1
N

N

∑
n=1
J(xn)J(xn)

∗, (11)

with the ideal J given by

J(x) = lim
τ→0

τ
−1[∇(g ◦Fτ)(x)−∇g(x)]. (12)

Compared to a standard Gaussian kernel, (10) comes from
the change of variables x 7→ x̃ =M 1/2x. Correspondingly,
let g̃(x̃) = g(x) and F̃τ(x̃) = ỹ, where y = Fτ(x), and

J̃(x) = lim
τ→0

τ
−1[∇(g̃ ◦ F̃τ)(x)−∇g̃(x)]. (13)

This featurization mapping, i.e., x 7→ x̃, g 7→ g̃, and Fτ 7→
F̃τ , assumes that the input/output pairs are mapped by M 1/2,
but that the observations do not change. The matrices J and
J̃ measure infinitesimal changes in space and time of the orig-
inal and transformed variables respectively. Theorem II.1 be-
low shows that these changes are isotropic in the transformed
variables (proof is in Appendix B).

Theorem II.1. WithM defined by (11)-(12),

1
N

N

∑
n=1

∣∣u∗J̃(x̃n)
∣∣2 ≡ 1, for all unit u. (14)

In particular, if x(t) satisfies a linear ODE driven by a real
invertible matrix A, then J =A while J̃ = (AA∗)−1/2A is
an orthogonal matrix.

In practice, we compute J using

J(x)≈
R

∑
m=1

λm∇φm(x)v
∗
m, (15)

and iteratively improve both J and M using Algorithm II.2.
Though J here may not be real, we can just replaceM by its
real part without changing kM (x,x′).

C. Time embeddings

Time embeddings are useful for high dimensional systems
that are only partially observed, and have a theoretical basis
in Taken’s theorem10,36. Recent work10 has used time embed-
dings to construct larger matrices in (3)-(4) with Hankel struc-
ture30; our setup is different because time embedded data goes
directly into the features, leading to smaller matrices in (3)-(4)
while improving distance measurements.

Here, we define samples as time embeddings of length ℓ,

xn+1 =
[
x(nτ) . . . x((n+ ℓ−1)τ)

]
yn+1 =

[
x((n+1)τ) . . . x((n+ ℓ)τ)

]
,

(16)

where x(0) is some initial state. The evolution map Fτ ex-
tends to such states in a natural way, and the associated Koop-
man operator is then defined on functions of time embedded
states. From here on, we abuse notation by writing x or x′ for
a time embedding (or sample) of the form (16).

Note that this gives both the samples (16) and features (9) a
time-embedded structure. Increasing the embedding length of
the samples enables recovery of the underlying manifold10,36.
Moreover, it improves distance measurements when the in-
put/output pairs are corrupted by additive noise, as is easily
seen from the law of large numbers (assuming noise correla-
tions decay sufficiently fast in time).

D. The FKMD Algorithm

We summarize our algorithm below, which we call Featur-
ized Koopman Mode Decomposition (FKMD).

Algorithm II.2 (FKMD). Generate samples x1, . . . ,xN and
y1, . . . ,yN according to (16), and choose bandwidth h> 0 and
initial Mahalanobis matrix M = I . Then, iterate the follow-
ing steps until approximate convergence:

1. Let σ = standard deviation of the pairwise distances be-
tweenM 1/2x1, . . . ,M

1/2xN . ScaleM ←M/(hσ)2.

2. Construct Ψx and Ψy defined in (3)-(4), using features
defined either by (9)- (10) or by (17)- (18).

3. Solve forK andB in (5)-(6), e.g. via ridge regression.

4. Eigendecompose K according to (7). That is, compute
right and left eigenvectors ξm andwm ofK, along with
eigenvalues µm. Scale them so that w∗mξm = 1.
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5. Compute continuous time Koopman eigenvalues, Koop-
man eigenfunction, and Koopman modes, using

λm = τ
−1 log µm, φm(x) =ψ(x)ξm, v∗m =w∗mB.

6. UpdateM using (11) and (15). Then return to Step 1.

Note that observations can be predicted using (8) at any iter-
ation of Algorithm II.2. We find empirically that convergence
ofM and the predictions occurs after 3-6 iterations.

Algorithm II.2 requires only a few user chosen parame-
ters: an embedding length ℓ, a bandwidth h, and a number
of features R (not counting regularization parameters or pos-
sible cutoffs and subsampling parameters, discussed below).
This is a significant advantage over artificial neural network
methods, which often require searching over a much larger
set of hyperparameters37, and a training procedure that is not
guaranteed to converge to an optimal parameter set38–40.

E. Tuning

The initialM could be chosen using information about the
system. In the absence of that, we use a scalar multiple of
I as described in Algorithm II.2. Subsampling may be used
to estimate M and σ . If results degrade with iterations, we
recommend adding a small ridge regularization to M by up-
dating M ←M + δI after Step 6, where δ > 0 is a small
parameter. Note that M could be replaced by its real part af-
ter Step 6 without changing kM (x,x′); this makes M into a
symmetric positive semidefinite matrix, a necessary step when
using random Fourier features (Section II F).

Note that equation (8) naturally allows for mode selection.
For example, modes that lead to predictions that are known to
be unphysical, e.g. diverging modes associated to eigenvalues
with Re(λm)≫ 0, can simply be omitted from the sum in (8).
Similar selection can be done to remove modes that oscillate
too fast, i.e., |Im(λm)| ≫ 0. We have done this when applying
equation (A1) in the experiments in Section III C.

We have also noticed empirically that estimates of M can
suffer from noise effects if too many modes are used. We find
good results by using only top modes according to some cut-
off in (15); e.g., removing modes with Re(λm) < −γ , where
γ > 0 is some threshold. Intuitively, this means eliminat-
ing effects from the shortest timescales. In the experiments
in Sections III A-III C below, we choose cutoffs using cross-
validation.

F. Scaling up to larger sample size

Kernel methods have historically been limited by the com-
putational complexity of large linear solves41 (usually limiting
sample size to N ≤ 105), as well as the difficulty of choosing
good features to mitigate the curse of dimensionality. Here,
we show how to scale FKMD to large sample size N.

To this end, we use random Fourier features9,25,26,42,43

ψ
RFF
m (x) = exp(iωT

mM
1/2x), m = 1, . . . ,R. (17)

Here, ωm are iid Gaussians with mean 0 and covariance I ,

ωm ∼N(0,I), (18)

andM is symmetric positive semidefinite.
We expect good results with R ≪ N; this leads to much

more efficient linear solves and eigendecompositions. The
features (17)-(18) essentially target the same linear system (5)
as the kernel features, but they do it more efficiently by sam-
pling. See Appendix C for details.

III. EXPERIMENTS

A. Alanine dipeptide

We illustrate Algorithm II.2 on alanine dipeptide44, a small
protein. Our input/output sequences are taken from the time
series data in45. The sample points represent the 30 dimen-
sional positions of heavy atoms, which are known to be a suf-
ficient description of the system. We take N = 106, R = 8000,
ℓ = 1, and we compute M from the top 20 modes. We es-
timate σ and M using a random subsample of 5000 points.
The algorithm converges in ≈ 4 iterations.

Figure 1 show that M 1/2 featurizes the data in a way that
is superior to a basic technique like PCA. Figure 1(a) shows
the Mahalanobis matrix after convergence of FKMD. Fig-
ure 1(b) indicates that M 1/2 maps into a 6-dimensional sub-
space of the 30 dimensional space of heavy atom positions.
The (square root) of the data covariance, C1/2, does not map
into low dimension quite as nicely. Figure 1(c) shows eigen-
values of a Markov model built using 100 k-means clusters
from data mapped by M 1/2, compared to the same number
of clusters from PCA-projected data with 95% of the vari-
ance retained. The cluster of 4 eigenvalues near 1 suggests
3 long timescales. Figure 1(d) shows the corresponding im-
plied timescales; using M 1/2 leads to a better Markov model
(capturing shorter timescales) due to faster flattening of these
timescales46.

There are several standard featurization techniques for con-
structing Markov models, including time-lagged independent
component analysis (TICA)47,48, the variational approach for
conformational dynamics (VAC)49,50, and VAMPnets51. We
are not suggesting that FKMD should replace any of these
methods. Our goal here is simply to use a well-known metric
– implied timescales – to illustrate that theM 1/2 mapping can
reliably featurize high dimensional data.

B. Lorenz attractor

Here, we illustrate Algorithm II.2 on data from the Lorenz
96 model27, a high-dimensional ODE exhibiting chaotic be-
havior. This model (and its 3-dimensional predecessor52) are
often used to interpret atmospheric convection and to test tools
in climate analysis53. The model is

dθ j

dt
= (θ j+1−θ j−2)θ j−1−θ j +F,
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FIG. 1: For alanine dipeptide, mapping byM 1/2 improves
clustering compared to PCA projection. (a)M 1/2 after
convergence of FKMD. (b) Eigenvalues ofM 1/2 after

convergence of Algorithm II.2 compared to eigenvalues of
the data covariance matrix. (c) Eigenvalues of the Markov

model at the smallest lag time. (d) Largest implied timescales
when usingM 1/2 (solid lines) and PCA (dotted lines).

Confidence regions from 25 independent simulations are
mostly too small to see.

with j = 1, . . . ,40 periodic coordinates ( j ≡ j mod 40). We
set F = 8, and integrate using 4th order Runge-Kutta54 with
integrator time step 10−2. The initial condition is53

θ j(0) =

{
F +1, j mod 5 = 0
F, else

.

To illustrate the power of FKMD, we observe just 2.5% of
the system, namely the first coordinate θ1, and we add nui-
sance or “noise” variables. Specifically, we use the time em-
bedding (16) with τ = 0.05 and

x(nτ) =
[
θ1(nτ) noise(nτ)

]
, (19)

where noise(nτ) for n = 0,1,2, . . . are independent standard
Gaussian random variables. To infer θ1(t) from training data,
we use Algorithm II.2 with random Fourier features defined
in (17)-(18). Inference begins at the end of the training set
and consists of 100 discrete steps of time length τ . The code
for this experiment is available here55.

For the FKMD parameters, we use N = 106 sample points,
R = 8000 features, a time embedding of length ℓ = 100, and
a constant bandwidth factor h = 1. The observation g(x) is
a 1× 200 vector associated with time embeddings of (19) as
defined in (16). Results are plotted in Figure 2. If any one of
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FIG. 2: Illustration of FKMD for predicting a single
observed coordinate of a noisy high-dimensional Lorenz
system. (a)-(c): FKMD at the 1st, 2nd and 5th iterations,

respectively. Results do not change much after 5 iterations.
(d): Ordinary KMD does not correlate with the data, even

when nuisance coordinates are not included.

N, R, or ℓ is decreased, results degrade noticeably on the time
horizon we use for inference. We use the top 20 modes to de-
fineM , and we estimate σ andM using a random subsample
of 5000 points.

Figure 2(a)-(c) shows inference using equation (8). FKMD
converges in about 5 iterations, providing a very close match
to the actual data. Figure 2(d) shows ordinary KMD. (Ordi-
nary KMD corresponds to Algorithm II.2 with all the same pa-
rameters except ℓ= 1,M is a scalar, iteration is unnecessary,
and nuisance variables are not included.) In this experiment,
ordinary KMD is not able to make good predictions.

The Mahalanobis matrices after the 1st and 5th iterations
are shown in Figure 3(a)-(b). We split the mappingM 1/2 into
nuisance and non-nuisance parts based on (19). The M 1/2

mapping eliminates the nuisance coordinates, while preserv-
ing the structure of the underlying signal.

C. Cell signaling dynamics

In a real-world data-driven setting, complex and potentially
noisy temporal outputs derived from measurement may not
obey a simple underlying ODE or live on a low-dimensional
dynamical attractor. Information contained by internal signal-
ing pathways within living cells is one such example, being
complex and subject to noisy temporal outputs arising from
properties of the system itself and experimental sources.

With this in mind, we next apply FKMD to dynamic signal-
ing activity in cancer cells to assess its performance. We show
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FIG. 3: The Mahalanobis mappingM 1/2 after the 1st and 5th
iterations. To aid in visualization, we have split the matrix

into nuisance coordinates at the right and non-nuisance
coordinates at the left. (The insets at left are the bottom right

15×15 submatrices of non-nuisance coordinates.) The
matrixM 1/2 maps away the nuisance coordinates, and finds

appropriate structure in the non-nuisance coordinates.

that our methods enable the forward prediction of single-cell
signaling activity from past knowledge in a system where sig-
naling is highly variable from cell to cell and over time56. The
extracellular signal-regulated kinases (ERK) signaling path-
way is critical for the perception of cues outside of cells and
for translation of these cues into cellular behaviors such as
changes in cell shape, proliferation rate, and phenotype57. Dy-
namic ERK activity is monitored via the nuclear or cytoplas-
mic localization of the fluorescent reporter (Figure 4A). We
track single-cells through time in the live-cell imaging yield-
ing single-cell ERK activity time series (Figure 4C). The first
72 hours of single-cell trajectories serve as the training set
to estimate the Koopman operator, and we withhold the final
18 hours of the single-cell trajectories to test the predictive
capability of FKMD. The raw ERK activity trajectories on
their own yield no predictive capability via standard Kernel
DMD methods, but our iterative procedure to extract the Ma-
halanobis matrix leads to a coordinate rescaling which cou-
ples signaling activity across delay times (Figure 4B,D) and
enables a forward prediction of ERK activity across the test-
ing window (Figure 4D).

We use N = 5202 samples and kernel features with R = N,
and we choose bandwidth h = 1.05 and a time embedding of
length ℓ= 49. The function g(x) is a 1×49 time embedding
of the scalar ERK activity. For inference, we exclude modes
where Re(λm) > 0.15 and |Im(λm)| > π/3. This amounts to
excluding unstable modes and modes that oscillate quickly.
We use the remaining modes to constructM . Prediction qual-
ity is quantified by estimating the relative error and correlation

between inferred and test set ERK activity trajectories.
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FIG. 4: FKMD enabled cell signaling state prediction. (A)
Fluorescent ERK reporter expressing breast cancer cell

embedded in a mammary tissue organoid, showing
representative high activity (left, cytoplasmic localized) and

low activity (right, nucleus localized). (B) Malahanobis
matrix at iteration 8, where test set correlation is maximized.
(C) Representative single-cell ERK activity traces, measured
test set (solid lines), and FKMD-predicted (dashed lines). (D)

Mahalanobis matrix by FKMD iteration (top), and FKMD
prediction performance from 0-18hrs quantified by relative
root mean squared (RMS) error and correlation to test set

(bottom left and right) by iteration number (cyan to magenta
circles), solid lines are spline fits added as guides to the eye.

IV. DISCUSSION AND FUTURE WORK

This article introduces FKMD, a method we propose that
generates more accurate predictions than ordinary Gaussian
kernel KMD. The method is based on time embeddings and a
Mahalanobis featurization that mitigates the curse of dimen-
sionality. Results in three separate application areas – molecu-
lar dynamics, climate, and cell signaling dynamics – illustrate
the promise of the method for analyzing time series generated
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by complex systems.
Many theoretical and algorithmic questions remain. Em-

pirically, we have found that a few iterations and modes lead
to good results, but more empirical testing is needed, and our
theoretical understanding of these issues is lacking. For ex-
ample, we cannot yet describe a simple set of conditions that
guarantees good behavior of Algorithm II.2, like convergence
to a fixed point.

We would also like to explore alternative methods for scal-
ing up FKMD to larger sample sizes. Here, we use ran-
dom Fourier features, but there are other possibilities. Some
come from modern advances in randomized numerical linear
algebra, e.g. randomly pivoted Cholesky41,58. Such meth-
ods promise spectral efficiency for solving symmetric positive
definite linear systems. Assuming fast spectral decay of Ψx,
these techniques could help our methods scale to even larger
sample sizes. We will explore the application of these cutting-
edge methods in future works.

Finally, we would like to better understand mechanisms,
i.e., what makes a system go to B rather than A? Here, A
and B could be associated with El Niño occurring or not, or
with a pre-cancerous lesion remaining benign or becoming in-
vasive. This can be formalized by the concept of the commit-
tor function59, the probability that the system reaches state B
before A from a given starting state. In this case, the commit-
tor could be represented as a Koopman eigenfunction, andM
could be chosen to identify important mechanisms leading to
A or B. We hope to explore this idea in future work.
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Appendix A: Derivation of Koopman eigendecomposition

Here, we show how to arrive at the Koopman eigendecom-
position (8). This has been shown already in5, but we provide
a streamlined derivation here for convenience.

Recall that the matrixK is a finite dimensional approxima-
tion to the Koopman operator. This approximation is obtained
by applying a change of variables from sample space to fea-
ture space. The change of variables is given by the matrix Ψx.

This leads to the following equation for inference:Kτ(g)(x1)
...

Kτ(g)(xN)

≈ΨxKΨ†
x

g(x1)
...

g(xN)

 , (A1)

where † denotes the Moore-Penrose pseudoinverse. Similarly,

B =Ψ†
x

g(x1)
...

g(xN)

 .

The eigendecomposition ofK can be written as

K =ΞDW ∗, (A2)

where KΞ=ΞD and W ∗K =DW ∗, and we may assume
that W ∗Ξ = I . Here, D is the diagonal matrix of Koopman
eigenvalues, µm; that is, D = exp(τΛ) where Λ is the diago-
nal matrix of continuous time Koopman eigenvalues, λm.

Plugging (A2) into (A1),Kτ(g)(x1)
...

Kτ(g)(xN)

≈ΨxΞexp(τΛ)W ∗B. (A3)

The definition of Koopman modes and Koopman eigenfunc-
tions shows that the rows of W ∗B are the Koopman modes
v∗m, while the Koopman eigenfunctions are sampled by the
columns of

ΨxΞ=

φ1(x1) . . . φR(x1)
...

...
φ1(xN) . . . φR(xN)

 . (A4)

Substituting (A4) into (A3) and writing the matrix multiplica-
tion in terms of outer products yields equation (8), provided
we substitute xn for x, using any sample point xn.

Appendix B: Choice of Mahalanobis matrix

Here, we explain the reasoning behind the choice of Maha-
lanobis matrix in more detail. Recall that the matrix defines
a change of variables, x̃ =M 1/2x, where the tilde notation
indicates the changed variables. Below, we assume that M is
symmetric positive definite.

Write x̃n =M
1/2xn, ỹn =M

1/2yn, and

g̃(x) = g(M−1/2x), F̃τ(x) =M
1/2Fτ(M

−1/2x).

Observe that then g̃(x̃) = g(x) and F̃τ(x̃n) = ỹn. We sum-
marize these notations and mappings in Figure 5. Define

J(x) = lim
τ→0

τ
−1[∇(g ◦Fτ)(x)−∇g(x)],

J̃(x) = lim
τ→0

τ
−1[∇(g̃ ◦ F̃τ)(x)−∇g̃(x)].
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FIG. 5: A figure summarizing the “tilde” notation for B.1.

The next result, Proposition B.1, justifies our choice ofM .
It shows that the changes in space and time in the transformed
variables, as measured by J̃ , are isotropic. This is a general
result that is true regardless of kernel choice and other KMD
hyperparameters. Below, we implicitly assume appropriate
smoothness so that all the calculations make sense.

Proposition B.1. WithM defined by (11)-(12),

1
N

N

∑
n=1

∣∣u∗J̃(x̃n)
∣∣2 ≡ 1, for unit u. (B1)

Proof. By the chain rule,

∇(g̃ ◦ F̃)(x̃n)

= ∇F̃τ(x̃n)∇g̃(F̃τ(x̃n))

=M−1/2
∇Fτ(M

−1/2x̃n)M
1/2M−1/2

∇g(M−1/2ỹn)

=M−1/2
∇Fτ(xn)∇g(yn)

=M−1/2
∇(g ◦Fτ)(xn).

Similarly,

∇g̃(x̃n) =M
−1/2

∇g(M−1/2x̃n)

=M−1/2
∇g(xn).

As a result,

J̃(x̃n) =M
−1/2J(xn).

It follows that

1
N

N

∑
n=1

∣∣u∗J̃(x̃n)
∣∣2

=
1
N

N

∑
n=1

∣∣∣u∗M−1/2J(xn)
∣∣∣2

=
1
N

N

∑
n=1
u∗M−1/2J(xn)J(xn)

∗M−1/2u≡ 1.

The following special case in Proposition B.2 is helpful for
intuition. It states that this change of variables applied to a
linear ODE makes that ODE appear to be driven by an or-
thogonal matrix.

Proposition B.2. Suppose that Fτ is the evolution map of a
linear ODE driven by a real invertible matrixA,

dx(t)∗

dt
= x(t)∗A,

and that the observation is the whole state, g(x) = x∗. Then
J =A, M =AA∗, and J̃ = (AA∗)−1/2A is an orthogonal
matrix.

Proof. Since Fτ(x) = eτA∗x,

J(x) = lim
τ→0

τ
−1[∇(g ◦Fτ)(x)−∇g(x)]

= lim
τ→0

τ
−1(eτA−I) =A.

By (11),M =AA∗. Similarly,

J̃(x) = lim
τ→0

τ
−1[∇(g̃ ◦ F̃τ)(x)−∇g̃(x)]

= lim
τ→0

τ
−1M−1/2(eτA−I) =M−1/2A.

Finally, J̃∗J̃ =A∗(AA∗)−1A= I .

Propositions B.1-B.2 explain the choice of M except for
the variable scalar bandwidth σ . Computing σ from standard
deviations of pairwise distances is standard, except that in Al-
gorithm II.2 it is applied to the transformed samples,M 1/2x,
to appropriately reflect the change of variables. The additional
constant scaling factor h can be chosen using standard tech-
niques such as cross validation32.

Remark B.3. We could have used another kernel that incor-
porates our change of variables, e.g., the Laplace kernel

klaplace
M (x,x′) = exp

[
−
[
(x−x′)∗M(x−x′)

]1/2
]
.

Propositions B.1 and C.1 are independent of kernel choice.

Remark B.4. It is intuitively reasonable to consider using

J(x)≈
R

∑
m=1

λmφm(x)vm, (B2)

where g(x) =x∗ observes the full sample. We observed better
results, though, with our method based on Theorem II.1.

Appendix C: Connecting kernels with random Fourier features

Below, we assume that M is symmetric positive definite.
The connection between the kernel features (9)- (10) and ran-
dom Fourier features (17)- (18) is the following.
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Proposition C.1. We have

kM (x,x′) = E
[
ψ

RFF
m (x)∗ψRFF

m (x′)
]

where E denotes expected value.

Proof. Let δ=x′−x, δ̃=M 1/2δ. By completing the square,

− 1
2
|ω|2 + iωTM 1/2

δ =−1
2
[
(ω− iδ̃)T (ω− iδ̃)

]
− 1

2
|δ̃|2,

so if samples live in d-dimensional (real) space Rd , we get

E
[
ψ

RFF
m (x)∗ψRFF

m (x′)
]

= (2π)−d/2
∫

exp(−|ω|2)exp(iωTM 1/2δ)dω

= exp(−|δ̃ |2/2) = kM (x,x′).

Based on Proposition C.1, we now show the connection be-
tween FKMD procedures with kernel and random Fourier fea-
tures. Let ΨRFF

x and ΨRFF
y be the N×R samples by features

matrices associated to random Fourier features (17), and let
Ψx and Ψy be the same matrices associated with kernel fea-
tures (9). Using Proposition C.1, for large R,

Ψx ≈ΨRFF
x (ΨRFF

x )∗, Ψy ≈ΨRFF
y (ΨRFF

x )∗. (C1)

Assume the columns of ΨRFF
x are linearly independent. Then

(ΨRFF
x )∗[(ΨRFF

x )∗]† = I (C2)

where † is the Moore-Penrose pseudoinverse. Define

KRFF = (ΨRFF
x )∗K[(ΨRFF

x )∗]†, (C3)

whereK satisfies

ΨxK =Ψy. (C4)

Multiplying (C4) by (ΨRFF
x )∗ and [(ΨRFF

x )∗]† on the left and
right respectively, and then using (C1)-(C3), leads to

(ΨRFF
x )∗ΨRFF

x KRFF ≈ (ΨRFF
x )∗ΨRFF

y ,

which is the least squares normal equation for

ΨRFF
x KRFF =ΨRFF

y . (C5)

This directly connects the linear solves (C4) and (C5) for the
Koopman matrix using kernel and random Fourier features,
respectively. Moreover, from (C1)-(C3),

ΨRFF
x KRFF(ΨRFF

x )† ≈ΨxKΨ†
x. (C6)

In light of (A1), equation (C6) shows that Fourier features and
kernel features give (nearly) the same equation for inference.

Due to Proposition C.1 and the computations in (C1)-(C6)
above, random Fourier features (17) and kernel features (9)
target essentially the same FKMD procedure whenever R is
sufficiently large. In practice, this means random Fourier fea-
tures can be a more efficient way of solving the same problem.

DATA GENERATION

ERK activity reporters, cell line generation, and live-cell
imaging have been described in detail in Davies et al56. Here
we utilize a dataset monitoring ERK activity in a tissue-
like 3D extracellular matrix. Images were collected every
30 minutes over a 90-hour window. Single cells were seg-
mented using Cellpose software60 and tracked through time
by matching cells to their closest counterpart at the previous
time point. ERK reporter localization was monitored via the
mean-centered and variance stabilized cross-correlation be-
tween the nuclear reporter and ERK activity reporter chan-
nels in the single-cell cytoplasmic mask. Single-cell tra-
jectories up to 72 hours served as the training set to es-
timate the Koopman operator. Training and test set data
is available and can be accessed via a Zenodo repository
(https://doi.org/10.5281/zenodo.10849852).
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2I. Mezić, Not. Am. Math. Soc. 68, 1087 (2021).
3B. O. Koopman, Proceedings of the National Academy of Sciences 17, 315
(1931).

4J. Koopman, Annu. Rev. Public Health 25, 303 (2004).
5M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, Journal of Nonlinear
Science 25, 1307 (2015).

6J. H. Tu, Dynamic mode decomposition: Theory and applications, Ph.D.
thesis, Princeton University (2013).

7I. Kevrekidis, C. W. Rowley, and M. Williams, Journal of Computational
Dynamics 2, 247 (2016).

8J. L. Proctor, S. L. Brunton, and J. N. Kutz, SIAM Journal on Applied
Dynamical Systems 15, 142 (2016).

9A. M. DeGennaro and N. M. Urban, SIAM Journal on Scientific Computing
41, A1482 (2019).

10M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz, SIAM Journal on
Applied Dynamical Systems 19, 886 (2020).

11T. Kawashima and H. Hino, Neural Computation 35, 82 (2022).
12P. J. Baddoo, B. Herrmann, B. J. McKeon, J. Nathan Kutz, and S. L. Brun-

ton, Proceedings of the Royal Society A 479, 20220576 (2023).
13N. B. Erichson, S. L. Brunton, and J. N. Kutz, Journal of Real-Time Image

Processing 16, 1479 (2019).
14B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, Journal of

neuroscience methods 258, 1 (2016).
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