

Math 517 HW 4 solutions

1. Let (X, d) be a metric space. Define a metric on $X \times X$ that makes $d : X \times X \rightarrow \mathbb{R}$ continuous. Show that the distance between compact sets A and B is attained by a pair of points.

Solution. For $(x, y), (z, w) \in X \times X$, define $d_{X \times X}((x, y), (z, w)) = d(x, z) + d(y, w)$. Note that $d_{X \times X}((x, y), (z, w)) \leq d(x, u) + d(u, z) + d(y, v) + d(v, w) = d_{X \times X}((x, y), (u, v)) + d_{X \times X}((u, v), (z, w))$ for any $(x, y), (u, v), (z, w) \in X \times X$. Thus $d_{X \times X}$ satisfies the triangle inequality. It is easy to see $d_{X \times X}$ satisfies the other properties of a metric. By the triangle inequality for d ,

$$d(x, y) - d(z, w) \leq d(x, z) + d(z, y) - (d(z, y) - d(y, w)) = d(x, z) + d(y, w).$$

By symmetry, $|d(x, y) - d(z, w)| \leq d(x, z) + d(y, w) = d_{X \times X}((x, y), (z, w))$. Thus d is (Lipschitz) continuous. Let $\{(x_n, y_n)\}$ be a sequence in $A \times B$. By compactness of A, B , there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converging to $x \in A$, and a subsequence $\{y_{m_l}\}$ of $\{y_n\}$ converging to $y \in B$. Then $d_{X \times X}((x_{m_l}, y_{m_l}), (x, y)) = d(x_{m_l}, x) + d(y_{m_l}, y) \rightarrow 0$ as $l \rightarrow \infty$. This shows $A \times B$ is compact in $(X \times X, d_{X \times X})$. Thus $S := d(A \times B)$ is compact so that $\inf S \in S$ as desired.

2. Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ has the property that whenever $f(x) < w < f(y)$, there exists z between x, y such that $f(z) = w$. Assume for all $r \in \mathbb{Q}$, $f^{-1}(\{r\})$ is closed. Show f is continuous.

Solution. Suppose f is not continuous at $x \in \mathbb{R}$. Then there is $\epsilon > 0$ and $\{x_n\}$ in \mathbb{R} converging to x such that $f(x_n) \notin (f(x) - \epsilon, f(x) + \epsilon)$ for all n ; WLOG suppose $f(x_n) \geq f(x) + \epsilon$ for all n . Choose $r \in \mathbb{Q}$ with $f(x_n) > r > f(x)$ for all n , and pick t_n between x, x_n such that $f(t_n) = r$. As x is a limit point of $\{t_n : n \in \mathbb{N}\} \subseteq f^{-1}(\{r\})$ and $f^{-1}(\{r\})$ is closed, $f(x) = r$, contradiction.

3. Using definitions, show $f : [0, \infty) \rightarrow \mathbb{R}$, $f(x) = \sqrt{x}$, is uniformly but not Lipschitz continuous.

Solution. Note that for any $K > 0$, $|\sqrt{x} - \sqrt{0}| \leq K|x - 0|$ is false for $0 \leq x < 1/K^2$. So f is not Lipschitz continuous. To show uniform continuity let $\epsilon > 0$ and take $\delta = \epsilon^2$. Then for $0 \leq y < x$, $|x - y| < \delta$ implies $|\sqrt{x} - \sqrt{y}|^2 \leq |\sqrt{x} - \sqrt{y}| |\sqrt{x} + \sqrt{y}| = |x - y| < \delta = \epsilon^2$.

4. Let $f : X \rightarrow Y$ be continuous and X compact. Finish the following argument to prove that f is uniformly continuous: If f is not uniformly continuous, then for some $\epsilon > 0$ there exists sequences $\{p_n\}$ and $\{q_n\}$ in X such that $\lim_{n \rightarrow \infty} d_X(p_n, q_n) = 0$ but $d_Y(f(p_n), f(q_n)) \geq \epsilon$ for all n ...

Solution. Problem 1 shows there is a subsequence $\{(p_{n_k}, q_{n_k})\}$ of $\{(p_n, q_n)\}$ converging to (p, q) in $X \times X$ (endowed with the metric $d_{X \times X}$). Then $\{p_{n_k}\}$ and $\{q_{n_k}\}$ converge to p and q respectively, as $d(p_{n_k}, p) + d(q_{n_k}, q) = d_{X \times X}((p_{n_k}, q_{n_k}), (p, q)) \rightarrow 0$ as $n \rightarrow \infty$. Moreover, $p = q$ since $d_X(p, q) \leq d_X(p, p_{n_k}) + d_X(p_{n_k}, q_{n_k}) + d_X(q_{n_k}, q) \rightarrow 0$ as $k \rightarrow \infty$. Continuity of f implies $d_Y(f(p_{n_k}), f(q_{n_k})) \leq d_Y(f(p_{n_k}), f(p)) + d_Y(f(q), f(q_{n_k})) \rightarrow 0$ as $n \rightarrow \infty$, contradiction.

5. Let $f : (a, b) \rightarrow \mathbb{R}$ be monotone increasing and for $x \in (a, b)$ define $L(x) = \sup\{f(z) : a < z < x\}$ and $U(x) = \inf\{f(z) : x < z < b\}$. Show that: (i) $L(x) \leq U(x)$ for all $x \in (a, b)$; (ii) if $a < x < y < b$ then $U(x) \leq L(y)$; (iii) f is not continuous at x if and only if $L(x) < U(x)$.

Solution. Throughout fix x and consider $x, y, z, w \in (a, b)$. (i) Note that $f(x)$ is an upper and lower bound for $\{f(z) : z < x\}$ and $\{f(z) : x < z\}$, respectively. Thus $L(x) \leq f(x) \leq U(x)$. (ii) Let $x < y$ and pick $w \in (x, y)$. Then since $f(w) \in \{f(z) : x < z\}$ and $f(w) \in \{f(z) : z < y\}$, we have $U(x) \leq f(w) \leq L(y)$. (iii) Using (i)-(ii), $f(z) \leq U(z) \leq L(x) \leq f(x) \leq U(x) \leq L(w) \leq f(w)$ when $a < z < x < w < b$; if f is continuous at x , letting $w, z \rightarrow x$ shows $L(x) = U(x)$. Conversely suppose $L(x) = f(x) = U(x)$ and let $\epsilon > 0$. Choose $a < z < x$ (resp. $x < w < b$) such that $f(z) > L(x) - \epsilon/2$ (resp. $f(w) < U(x) + \epsilon/2$). Then for $\delta = \min\{x - z, w - x\}$ and $y \in (x - \delta, x + \delta)$,

$$f(x) - \epsilon/2 = L(x) - \epsilon/2 < f(z) \leq f(y) \leq f(w) < U(x) + \epsilon/2 = f(x) + \epsilon/2.$$