1 Solutions to selected problems

1. Let $A \subset B \subset \mathbb{R}^n$. Show that $\text{int } A \subset \text{int } B$ but in general $\text{bd } A \not\subset \text{bd } B$.

Solution. Let $x \in \text{int } A$. Then there is $\epsilon > 0$ such that $B_\epsilon(x) \subset A \subset B$. This shows $x \in \text{int } B$. If $A = [0, 1]$ and $B = [0, 2]$, then $\text{bd } A = \{0, 1\} \not\subset \text{bd } B = \{0, 2\}$.

2. Let $A \subset \mathbb{R}^n$ be open and $f : A \to \mathbb{R}$ continuous with $f(u) > 0$. Show there is an open ball B around u such that $f(x) > f(u)/2$ for $x \in B$.

Solution. Since f is continuous at u, for $\epsilon = f(u)/2$ there is $\delta > 0$ such that $f(B_\delta(u)) \subset (f(u) - \epsilon, f(u) + \epsilon)$. In particular, $f(B_\delta(u)) > f(u)/2$ and we may take $B = B_\delta(u)$.

3. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is continuous and $f(u) > 0$ if u has at least one rational component. Prove that $f(u) \geq 0$ for all $u \in \mathbb{R}^n$.

Solution. Let $u \in \mathbb{R}^n$ be arbitrary. Write $u = (u_1, \ldots, u_n)$ and let $\{r_k\}$ be the first k digits in the decimal expansion for u_1, and let $u_k = (r_k, u_2, \ldots, u_n)$. Then $\{u_k\} \to u$ so by continuity of f, $\{f(u_k)\} \to f(u)$. Also $f(u_k) > 0$ for all k since the r_k’s are rational. Thus, $f(u) \geq 0$.

4. Show that an open ball in \mathbb{R}^n is bounded.

Solution. Let $B_r(x) \subset \mathbb{R}^n$ be an arbitrary ball. We must show it is contained in a ball $B_s(0)$ around 0. Let $s = r + \|x\|$. If $y \in B_r(x)$ then $\|y\| \leq \|y - x\| + \|x\| < r + \|x\| = s$. Thus, $B_r(x) \subset B_s(0)$.

5. Let $f : A \to \mathbb{R}$ be continuous with $A \subset \mathbb{R}^n$. If A is bounded, is $f(A)$ bounded? If A is closed, is $f(A)$ closed?

Solution. The answer to both questions is no. Consider $f(x) = 1/x$. Then $A = (0, 1)$ is bounded but $f(A) = (1, \infty)$ is not; $A = [1, \infty)$ is closed but $f(A) = (0, 1]$ is not.

6. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous with $f(u) \geq \|u\|$ for every $u \in \mathbb{R}^n$. Prove that $f^{-1}([0, 1])$ is sequentially compact.

Solution. Since $[0, 1]$ is closed and f is continuous, $f^{-1}([0, 1])$ is closed. It remains to
show $f^{-1}([0, 1])$ is also bounded, hence sequentially compact. If $x \in f^{-1}([0, 1])$, then $0 \leq f(x) \leq 1$ and $f(x) \geq \|x\|$, so in particular, $\|x\| \leq 1$. Thus, $f^{-1}([0, 1])$ is bounded.

7. Let $A \subset \mathbb{R}^n$ be sequentially compact and $v \in \mathbb{R}^n \setminus A$. Prove there is $u \in A$ such that

$$\|u - v\| \leq \|x - v\| \text{ for all } x \in A.$$ \hspace{1cm} (1)

Solution. Let $d = \inf_{x \in A} \|x - v\|$. Since $d + 1/k$ is not a lower bound for $\|x - v\|$ over $x \in A$, we may pick $u_k \in A$ such that $d \leq \|u_k - v\| < d + 1/k$. Using sequential compactness, pick $\{u_n\} \to u$. By continuity of vector subtraction and the norm $\|\cdot\|$, $\{|u_n - v|\} \to \|u - v\|$. And by the squeeze theorem in \mathbb{R}, $\|u - v\| = d$.

The point u is not unique: if $A = \{1, -1\} \subset \mathbb{R}$ and $v = 0$, then $u = \pm 1$ satisfy (1).

8. A mapping $F : \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continuous if there is $K > 0$ such that

$$|F(x) - F(y)| \leq K\|x - y\|$$ \hspace{1cm} (2)

for all $x, y \in \mathbb{R}^n$. Show that a Lipschitz mapping is uniformly continuous.

Solution. Suppose (2) holds for F. Let $\epsilon > 0$ and pick $\delta = K/\epsilon$. Then

$$\|F(x) - F(x)\| \leq K\|x - y\| < K\delta = \epsilon \text{ whenever } \|x - y\| < \delta.$$

9. Let A be sequentially compact and $f : A \to f(A)$ continuous and injective. Show f^{-1} is continuous. Give an example to show the assumption on A is necessary.

Solution. Let $\{v_k\}$ be a sequence in $f(A)$ such that $\{v_k\} \to v$, and let $u_k = f^{-1}(v_k)$, $u = f^{-1}(v)$. Suppose $\{u_k\} \not\to u$. Using sequential compactness of A, pick $\{u_n\} \to w \in A$ with $w \neq u$. By continuity of f, $\{f(u_n)\} \to f(w)$. As $\{f(u_n)\} = \{v_n\} \to v$, we have $f(w) = v$. Thus, $w = f^{-1}(v) = u$, contradiction.

To see that sequential compactness of A is needed, let

$$f(x) = \begin{cases} x, & 0 \leq x < 1 \\ 4 - x, & 2 \leq x \leq 3 \end{cases},$$

$$f^{-1}(x) = \begin{cases} x, & 0 \leq x < 1 \\ 3 - x, & 1 \leq x \leq 2 \end{cases}.$$

Note that f is continuous on $A = [0, 1) \cup [2, 3]$ but f^{-1} is not continuous at 1.
10. Let \(f : A \to \mathbb{R}^m \) be continuous and \(A \) sequentially compact. Show \(f \) is uniformly continuous.

Solution. Let \(\{u_k\}, \{v_k\} \) be sequences in \(A \) such that \(\{\|u_k - v_k\|\} \to 0 \). Suppose \(\{\|f(u_k) - f(v_k)\|\} \not\to 0 \). Then along a subsequence, \(\{\|f(u_{n_k}) - f(v_{n_k})\|\} \to c > 0 \). (Why?) Since \(A \) is sequentially compact, we can pick sub-subsequences \(\{u_{m_{n_k}}\} \to u \in A \) and \(\{v_{m_{n_k}}\} \to v \in A \), and \(u = v \) since \(\{\|u_k - v_k\|\} \to 0 \). By continuity of \(f \), \(\{f(u_{m_{n_k}})\} \to f(u) \) and \(\{f(v_{m_{n_k}})\} \to f(v) = f(u) \). Thus, \(\{\|f(u_{m_{n_k}}) - f(v_{m_{n_k}})\|\} \to 0 \), contradiction.

11. We say \(u \in \mathbb{R}^n \) is a limit point of \(A \subset \mathbb{R}^n \) if there is a sequence in \(A \setminus \{u\} \) that converges to \(u \). Prove that \(u \) is a limit point of \(A \) if and only if every open ball around \(u \) contains infinitely many points of \(A \setminus \{u\} \).

Solution. Let \(u \) be a limit point of \(A \) and \(\delta > 0 \). Let \(\{u_k\} \in A \setminus \{u\} \) be such that \(\{u_k\} \to u \), and pick \(N \) such that \(k \geq N \) implies \(u_k \in B_\delta(A) \setminus \{u\} \). Notice \(\{u_k : k \geq N\} \) must be an infinite set: if it were finite with elements \(v_1, \ldots, v_n \), then for \(\epsilon = \min_{1 \leq i \leq n} \|v_i - u\| \) we would have \(u_k \notin B_\epsilon(u) \) for every \(k \geq N \).

12. Let \(A \subset \mathbb{R}^n \) and let \(f \) be the characteristic function of \(A \). Show that \(f \) is continuous at \(u \) if and only if \(u \notin \text{bd} \, A \). Can one make an analogous statement about \(\lim_{x \to u} f(x) \)?

Solution. Suppose \(u \notin \text{bd} \, A \). Then if \(u \in A \), there is \(\delta > 0 \) such that \(B_\delta(u) \subset A \). Given any \(\epsilon > 0 \), if \(\|x - u\| < \delta \) then \(x \in A \) and so \(|f(x) - f(u)| = |1 - 1| = 0 < \epsilon \). If \(u \notin A \), there is \(\delta > 0 \) such that \(B_\delta(u) \subset \mathbb{R}^n \setminus A \) and an analogous argument holds. Conversely, if \(u \in \text{bd} \, A \), then for each \(k \in \mathbb{N} \) there is \(v_k, w_k \in B_{1/k}(u) \) such that \(v_k \in A \), \(w_k \in \mathbb{R}^n \setminus A \). Then \(\{v_k\} \to u \) and \(\{w_k\} \to u \), but \(\{f(v_k)\} \to 1 \), \(\{f(w_k)\} \to 0 \).

An analogous statement does not hold for limits. It is true that if \(u \notin \text{bd}(A) \) then \(\lim_{x \to u} f(x) \) exists – in the argument above, just replace \(\|x - u\| < \delta \) with \(0 < \|x - u\| < \delta \). However, the converse is false: if \(A = \{0\} \) then \(0 \in \text{bd}(A) \) yet \(\lim_{x \to 0} f(x) = 0 \) exists. (In the above argument, \(v_k \) and \(w_k \) could equal \(u \).)

13. Let \(f : A \to \mathbb{R}^m \) with \(u \in A \) a limit point of \(A \subset \mathbb{R}^n \). Show that if \(f \) does not have a limit at \(u \), then \(f \) is not continuous at \(u \).

Solution. We prove the contrapositive. Suppose \(f \) is continuous at \(u \). Then \(\lim_{x \to u} f(x) = f(u) \). To see this, let \(\epsilon > 0 \) and pick \(\delta > 0 \) such that \(\|f(x) - f(u)\| < \epsilon \) whenever \(\|x - u\| < \delta \) and \(x \in A \); then in particular, \(\|f(x) - f(u)\| < \epsilon \) whenever \(0 < \|x - u\| < \delta \) and \(x \in A \).
14. Let \(f : A \to \mathbb{R}^n \) with \(u \in A \) a limit point of \(A \subset \mathbb{R}^n \). Show that \(f \) is continuous at \(u \) if and only if \(\lim_{x \to u} f(x) = f(u) \).

Solution. We only need to observe that for any \(\epsilon > 0 \), the statements

\[
\|f(x) - f(u)\| < \epsilon \quad \text{whenever} \quad x \in A \quad \text{and} \quad 0 < \|x - u\| < \delta
\]

and

\[
\|f(x) - f(u)\| < \epsilon \quad \text{whenever} \quad x \in A \quad \text{and} \quad \|x - u\| < \delta
\]

are equivalent, since \(\|f(x) - f(u)\| = 0 < \epsilon \) when \(\|x - u\| = 0 \).

15. Let \(A \subset \mathbb{R}^n \) and suppose 0 is a limit point of \(A \). Suppose \(f : A \to \mathbb{R} \) is such that \(f(x) \geq c\|x\|^2 \) for all \(x \in A \), where \(c > 0 \) is constant. Suppose \(g : A \to \mathbb{R} \) is such that \(\lim_{x \to 0} g(x)/\|x\|^2 = 0 \). Prove there is \(r > 0 \) such that \(f(x) - g(x) \geq (c/2)\|x\|^2 \) for \(x \in A \) with \(0 < \|x\| < r \).

Solution. We use \(\epsilon = c/2 \) in the definition \(\epsilon - \delta \) definition of \(\lim_{x \to 0} g(x)/\|x\|^2 = 0 \). Pick \(\delta > 0 \) so that if \(x \in A \) with \(0 < \|x\| < \delta \), then \(\|g(x)/\|x\|^2\| = \|g(x)/\|x\|^2 < c/2 \) and so

\[
\|f(x) - g(x)\| \geq \|f(x)\| - \|g(x)\| \geq c\|x\|^2 - (c/2)\|x\|^2 = (c/2)\|x\|^2.
\]

16. Let

\[
f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}.
\]

Show \(f \) is continuous at \((0, 0)\) and has directional derivatives at \((0, 0)\) in every direction, but is not differentiable at \((0, 0)\).

Solution. To see \(f \) is continuous at \((0, 0)\): for \((x, y) \neq (0, 0)\),

\[
|f(x, y) - f(0, 0)| = \left| \frac{xy^2}{x^2 + y^2} - 0 \right| = \frac{|x|}{x^2 + y^2 + 1} \leq |x| \to 0 \text{ as } (x, y) \to 0.
\]

(See problem 14 above.) For the directional derivatives \(D_{(a,b)} f(0,0) \):

\[
\lim_{t \to 0} \frac{f((0,0) + t(a,b)) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(ta, tb)}{t} = \lim_{t \to 0} \frac{t^2ab^2}{t^2a^2 + t^2b^2} = \frac{ab^2}{a^2 + b^2}.
\]

Now note that \(D_1 f(0,0) = 0, D_2 f(0,0) = 0 \) and

\[
\frac{f((0,0) + (x,y)) - f(0,0) - 0x - 0y}{\| (x,y) \|} = \frac{xy^2}{x^2 + y^2} - \frac{0x - 0y}{\sqrt{x^2 + y^2}} = \frac{xy^2}{(x^2 + y^2)^{3/2}}.
\]
When \(x \equiv y \) and \(y \to 0 \) the limit of (3) is \(2^{-3/2} \neq 0 \), so \(f \) is not differentiable at \((0, 0)\).

17. Define \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) by

\[
f(x, y) = \begin{cases}
\frac{xy}{x^2+y^2}, & (x, y) \neq (0, 0) \\
0, & (x, y) = (0, 0)
\end{cases}
\]

Show the partial derivatives of \(f \) are not continuous at \((0, 0)\).

Solution. For \((x, y) \neq (0, 0)\), we can calculate partial derivatives “as usual” (i.e., without resorting to the definition):\(^1\)

\[
D_1 f(x, y) = \frac{y^3 - x^2y}{(x^2+y^2)^2}, \quad D_2 f(x, y) = \frac{x^3 - xy^2}{(x^2+y^2)^2}.
\]

In particular, \(D_1 f(0, y) = y^{-1}, D_1 f(x, 0) = x^{-1} \) do not have limits as \(y \to 0, x \to 0 \). Thus, they are not continuous at \((0, 0)\). (See problem 13 above.)

18. Define \(g : \mathbb{R}^2 \rightarrow \mathbb{R} \) by

\[
g(x, y) = \begin{cases}
x^2y^4, & (x, y) \neq (0, 0) \\
0, & (x, y) = (0, 0)
\end{cases}
\]

Is \(g \) continuously differentiable?

Solution. For \((x, y) \neq (0, 0)\) we can calculate partial derivatives “as usual”:

\[
D_1 g(x, y) = \frac{2xy^6}{(x^2+y^2)^2}, \quad D_2 g(x, y) = \frac{4x^4y^3 + 2x^2y^5}{(x^2+y^2)^2}.
\]

Moreover, from the limit definition of partial derivatives,

\[
D_1 g(0, 0) = \lim_{t \to 0} \frac{g(t, 0) - g(0, 0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0,
\]

\[
D_2 g(0, 0) = \lim_{t \to 0} \frac{g(0, 0) - g(0, t)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0.
\]

Since \(D_1 g(x, y) \) and \(D_2 g(x, y) \) are rational functions, they are continuous except at their asymptotes \((x, y) = (0, 0)\). Thus, to establish continuity of \(D_1 g \) and \(D_2 g \) we need only

\(^1D_i f \equiv D_{e_i} f \equiv \frac{\partial f}{\partial x_i}\)
check that \(\lim_{(x,y) \to (0,0)} D_i g(x, y) = 0 \) for \(i = 1, 2 \). For \((x, y) \neq (0,0) \),

\[
|D_1 g(x, y) - 0| = \left| \frac{2xy^6}{x^4 + 2x^2y^2 + y^4} \right| = \left| \frac{2xy^2}{x^2 + \frac{2x^2}{y^2} + 1} \right| \leq 2|x|y^2 \to 0 \text{ as } (x, y) \to (0,0)
\]

\[
|D_2 g(x, y) - 0| = \left| \frac{4x^4y^3 + 2x^2y^5}{x^4 + 2x^2y^2 + y^4} \right| = \left| \frac{4x^2y + 2y^3}{x^2 + 2 + \frac{y^2}{x^2}} \right| \leq 2x^2|y| + |y|^3 \to 0 \text{ as } (x, y) \to (0,0).
\]

This shows \(D_1 g(x, y) \) and \(D_2 g(x, y) \) are continuous; thus, \(g \) is continuously differentiable.

19. Suppose \(g : \mathbb{R}^2 \to \mathbb{R} \) has the property \(|g(x, y)| \leq x^2 + y^2 \) for all \((x, y) \in \mathbb{R}^2 \). Show \(g \) has partial derivatives with respect to both \(x \) and \(y \) at \((0, 0)\).

Solution. Our assumption on \(g \) forces \(g(0, 0) = 0 \) and thus

\[
\left| \frac{g(t, 0) - g(0, 0)}{t} \right| \leq \left| \frac{t^2}{t} \right| = |t|, \quad \left| \frac{g(0, t) - g(0, 0)}{t} \right| \leq \left| \frac{t^2}{t} \right| = |t|.
\]

Taking limits as \(t \to 0 \) in the above expressions, we find that \(D_1 g(0, 0) = D_2 g(0, 0) = 0 \).

20. Suppose \(f : \mathbb{R}^2 \to \mathbb{R} \) has first-order partial derivatives and

\[
D_1 f(x, y) = D_2 f(x, y) = 0 \quad \text{for all } (x, y) \in \mathbb{R}^2.
\]

Show that \(f \equiv c \) for some \(c \in \mathbb{R} \); that is, \(f \) is a constant function.

Solution. Fix \(y_0 \in \mathbb{R} \) and consider \(g : \mathbb{R} \to \mathbb{R} \) defined by \(g(x) = f(x, y_0) \). Suppose \(g \) is nonconstant. Then \(g(a) \neq g(b) \) for some \(a < b \), and by MVT there is \(r \in (a, b) \) such that \(D_1 f(r, y_0) = \frac{g'(r)}{r} = \frac{[g(b) - g(a)]/(b - a)}{b - a} \neq 0 \), contradiction. Thus, \(g \) is constant, say \(g \equiv c \). Let \((x, y) \in \mathbb{R}^2 \). By repeating the argument above, we find that the function \(h : \mathbb{R} \to \mathbb{R} \) defined by \(h(z) = f(x, z) \) is constant. Since \(h(y_0) = g(x) \) we must have \(h \equiv c \), and in particular \(f(x, y) = c \). Since \((x, y) \in \mathbb{R}^2 \) was arbitrary, we can conclude \(f \equiv c \).

21. Given \(\phi, \psi : \mathbb{R}^2 \to \mathbb{R} \), a function \(f : \mathbb{R}^2 \to \mathbb{R} \) is called a **potential function** for \(\phi, \psi \) if

\[
D_1 f(x, y) = \phi(x, y) \quad \text{and} \quad D_2 f(x, y) = \psi(x, y) \quad \text{for all } (x, y) \in \mathbb{R}^2.
\]

Show that when a potential function exists for \(\phi, \psi \), it is unique up to an additive constant. Then show that if there is a potential function for \(\phi, \psi \) and \(\phi, \psi \) are continuously differentiable, then

\[
D_1 \psi(x, y) = D_2 \phi(x, y) \quad \text{for all } (x, y) \in \mathbb{R}^2.
\]
Solution. Suppose \(f \) and \(g \) are two potential functions for \(\phi, \psi \) and let \(h = f - g \). Then
\[
D_i h(x, y) = D_i f(x, y) - D_i g(x, y) = 0 \quad \text{for all } (x, y) \in \mathbb{R}^2, \ i = 1, 2,
\]
so by Problem 20, \(h \) is constant. Thus, \(f \) and \(g \) differ by a constant. The statement in (4) follows from the assumption \(D_1 f \) and \(D_2 f \) are continuously differentiable and Theorem 13.10.

22. Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by
\[
f(x, y) = \begin{cases}
\frac{x^3 y - y^3}{x^2 + y^2}, & (x, y) \neq (0, 0) \\
0, & (x, y) = (0, 0).
\end{cases}
\]
Show that \(D_1 f(0, y) = -y \) for all \(y \in \mathbb{R} \) and \(D_2 f(x, 0) = x \) for all \(x \in \mathbb{R} \). Conclude that \(D_2 D_1 f(0, 0) = -1 \) but \(D_1 D_2 f(0, 0) = 1 \).

Solution. Away from \((0, 0)\) we can calculate partial derivatives of \(f \) “as usual,” i.e., without resorting to the limit definition. Thus, for \((x, y) \neq (0, 0)\),
\[
D_1 f(x, y) = \frac{(x^2 + y^2)(3x^2 y - y^3) - (x^3 y - xy^3)(2x)}{(x^2 + y^2)^2},
D_2 f(x, y) = \frac{(x^2 + y^2)(x^3 - 3xy^2) - (x^3 y - xy^3)2y}{(x^2 + y^2)^2}.
\]
Thus, for \(y \neq 0 \) and \(x \neq 0 \),
\[
D_1 f(0, y) = \frac{y^2 (-y^3)}{(y^2)^2} = -y, \quad D_2 f(x, 0) = \frac{x^2 x^3}{(x^2)^2} = x,
\]
and, from the limit definition of partial derivatives, \(D_1 f(0, 0) = 0 = D_2 f(0, 0) \). (Check this! See Problem 18 for a similar calculation.) Thus, \(D_2 D_1 f(0, y) = -1 \) and \(D_1 D_2 f(x, 0) = 1 \) for all \(x, y \in \mathbb{R} \). In particular, \(D_2 D_1 f(0, 0) = -1 \) but \(D_1 D_2 f(0, 0) = 1 \).

23. Let \(A \subset \mathbb{R}^2 \) be an open set containing \((x_0, y_0)\). Prove that there is \(r > 0 \) such that \((x, y) \in A\) whenever \(|x - x_0| < 2r \) and \(|y - y_0| < 2r\).

Solution. Pick \(\epsilon > 0 \) such that \(B_\epsilon(x_0, y_0) \subset A \). If \(0 < r < \epsilon/(2 \sqrt{2}) \), then
\[
\|(x, y) - (x_0, y_0)\| = \sqrt{(x - x_0)^2 + (y - y_0)^2} < \sqrt{(2r)^2 + (2r)^2} = \sqrt{8r^2} = 2\sqrt{2}r < \epsilon
\]
whenever \(|x - x_0| < 2r \) and \(|y - y_0| < 2r\).
24. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) are continuously differentiable. Find a formula for \(\nabla (g \circ f)(x) \) in terms of \(\nabla f(x) \) and \(g'(f(x)) \).

Solution. By the definition of partial derivative and the mean value theorem,

\[
D_i(g \circ f)(x) = \lim_{t \to 0} \frac{g(f(x + te_i)) - g(f(x))}{t} = \lim_{t \to 0} g'(z_t) \frac{f(x + te_i) - f(x)}{t},
\]

where \(z_t \) is on the line segment between \(f(x) \) and \(f(x + te_i) \). Notice \(\lim_{t \to 0} g'(z_t) = g'(f(x)) \) due to continuity of \(f \) and \(g' \), and \(D_i f(x) := \lim_{t \to 0}[f(x + te_i) - f(x)]/t \). Thus,

\[
D_i(g \circ f)(x) = g'(f(x))D_i f(x), \quad i = 1, \ldots, n,
\]

that is, \(\nabla (g \circ f)(x) = \nabla f(x) g'(f(x)) \).

25. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is such that \(D_v f(x) \) exists. Prove that \(D_{cv} f(x) = c D_v f(x) \) for any nonzero \(c \in \mathbb{R} \).

Solution. This follows from the computation

\[
D_{cv} f(x) = \lim_{t \to 0} \frac{f(x + tcv) - f(x)}{t} = \lim_{t \to 0} c \frac{f(x + tcv) - f(x)}{tc} = c \lim_{s \to 0} \frac{f(x + sv) - f(x)}{s} = c D_v f(x).
\]

26. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) has first-order partial derivatives and that \(x \in \mathbb{R}^n \) is a local minimizer for \(f \), that is, there is \(\epsilon > 0 \) such that

\[
f(x + h) \geq f(x) \text{ for } h \in B_\epsilon(0). \tag{5}
\]

Prove that \(\nabla f(x) = 0 \).

Solution. Due to the assumption (5), for \(i = 1, \ldots, n \),

\[
D_{e_i} f(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t} \geq 0,
\]

\[
D_{-e_i} f(x) = \lim_{t \to 0} \frac{f(x - te_i) - f(x)}{t} \geq 0,
\]

and by problem 25, \(D_{e_i} f(x) = -D_{-e_i} f(x) \leq 0 \). Thus \(D_{e_i} f(x) = 0 \), and so \(\nabla f(x) = 0 \).

27. Consider

\[
f(x, y, z) = xyz + x^2 + y^2.
\]
Find $\theta \in (0, 1)$ such that

$$f(1, 1, 1) - f(0, 0, 0) = D_1 f(\theta, \theta, \theta) + D_2 f(\theta, \theta, \theta) + D_3 f(\theta, \theta, \theta).$$

Solution. Note that

$$D_1 f(x, y, z) = yz + 2x, \quad D_2 f(x, y, z) = xz + 2y, \quad D_3 f(x, y, z) = xy.$$

and $f(1, 1, 1) - f(0, 0, 0) = 3$. Thus, we solve $3\theta^2 + 4\theta = 3$ to get $\theta = -\frac{2}{3} + \frac{\sqrt{13}}{3}$.

28. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x, y) = \begin{cases}
\frac{x\sqrt{x^2 + y^2}}{|y|}, & \text{if } y \neq 0, \\
0, & \text{if } y = 0.
\end{cases}$$

a) Prove f is not continuous at $(0, 0)$.
b) Prove f has directional derivatives in all directions at $(0, 0)$.
c) Prove for any $c \in \mathbb{R}$ there is p such that

$$\|p\| = 1 \text{ and } D_p f(0, 0) = c.$$

Does this contradict Corollary 13.18?

Solution. a) Note that $f(x, y) \equiv 1$ when $y = \frac{x^2}{\sqrt{1 - x^2}}$ and $x \neq 0$. Approaching $(0, 0)$ along this curve shows f is not continuous at zero, since $f(0, 0) = 0 \neq 1$.

b) When $b \neq 0$,

$$D_{(a,b)} f(0, 0) = \lim_{t \to 0} \frac{f(ta, tb) - f(0, 0)}{t} = \lim_{t \to 0} \frac{ta\sqrt{t^2a^2 + t^2b^2}}{t|tb|} = a\sqrt{\frac{a^2}{b^2} + 1}.$$

Also,

$$D_{(a,0)} f(0, 0) = \lim_{t \to 0} \frac{f(ta, 0) - f(0, 0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0.$$

Thus, f has directional derivatives in every direction at $(0, 0)$.

c) We show such p exists by solving the equations

$$a\sqrt{\frac{a^2}{b^2} + 1} = c, \quad a^2 + b^2 = 1 \quad \ldots \quad a = \frac{c}{\sqrt{1 + c^2}}, \quad b = \frac{1}{\sqrt{1 + c^2}}.$$

This does not contradict the corollary since f is not continuously differentiable. (See also Problem 33 below.)
29. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable and let \(K = \{ x \in \mathbb{R}^n : \| x \| = 1 \} \). Show there is a point \(x \in K \) at which \(f|_K \) attains its smallest value. Now suppose whenever \(p \in \mathbb{R}^n \) is a unit vector, \(\langle \nabla f(p), p \rangle > 0 \). Show that then \(\| x \| < 1 \).

\[\text{Solution.} \] \(K \) is sequentially compact and \(f \) is continuous, so \(f|_K \) attains a smallest value by the extreme value theorem (Theorem 11.22). Let \(p \in \mathbb{R}^n \) with \(\| p \| = 1 \). Then \(\langle \nabla f(p), p \rangle > 0 \) and

\[
0 = \lim_{t \to 0} \frac{f(p - tp) - f(p) - \langle \nabla f(p), -tp \rangle}{t} = \lim_{t \to 0} \frac{f(p - tp) - f(p)}{t} + \langle \nabla f(p), p \rangle.
\]

This shows that for \(t > 0 \) sufficiently close to zero, \(f(p - tp) - f(p) < 0 \). Thus, the minimum of \(f|_K \) cannot be attained at \(p \). For an \(\epsilon-\delta \) proof of this, let \(\epsilon = \langle \nabla f(p), p \rangle \) and pick \(\delta > 0 \) such that \(|t^{-1}[f(p - tp) - f(p)] + \langle \nabla f(p), p \rangle| < \epsilon \) whenever \(0 < |t| < \delta \). Then \(f(p - tp) - f(p) < 0 \) whenever \(0 < t < \delta \); why?

30. Prove that

\[
\lim_{(x,y) \to (0,0)} \frac{\sin(2x + 2y) - 2x - 2y}{\sqrt{x^2 + y^2}} = 0.
\]

\[\text{Solution.} \] Let \(f(x, y) = \sin(2x + 2y) \). Then \(D_1 f(x, y) = 2 \cos(2x + 2y) = D_2 f(x, y) \) are continuous. Thus, \(f \) is continuously differentiable, so since \(D_1 f(0, 0) = D_2 f(0, 0) = 2 \), by the first order approximation theorem,

\[
\lim_{(x,y) \to (0,0)} \frac{\sin(2x + 2y) - 2x - 2y}{\| (x,y) \|} = 0.
\]

31. Suppose \(f : \mathbb{R}^2 \to \mathbb{R} \) is continuous and \(a, b \in \mathbb{R} \). Prove

\[
\lim_{(x,y) \to (0,0)} [f(x, y) - (f(0, 0) + ax + by)] = 0. \tag{6}
\]

Is it true that

\[
\lim_{(x,y) \to (0,0)} \frac{f(x, y) - [f(0, 0) + ax + by]}{\sqrt{x^2 + y^2}} = 0? \tag{7}
\]

\[\text{Solution.} \] Since \(f \) is continuous, \(f(x, y) \to f(0, 0) = 0 \) as \((x, y) \to (0, 0) \). Moreover, \(ax + by \to 0 \) as \((x, y) \to (0, 0) \). This proves (6). Notice (7) is false unless \(f \) is also differentiable at \((0,0) \) with \(D_1 f(0, 0) = a, \ D_2 f(0, 0) = b \). (See the first order approximation theorem.)

32. Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by

\[
f(x, y) = \begin{cases} \sqrt{x^2 + y^2} \sin \frac{y^2}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}
\]
Show f is continuous at $(0, 0)$ and has directional derivatives in every direction at $(0, 0)$, but f is not differentiable at $(0, 0)$ — that is, there is no tangent plane to the graph of f at $(0, 0)$.

Solution. Notice $|f(x, y) - f(0, 0)| = \sqrt{x^2 + y^2} \sin \frac{y^2}{x^2} \leq \sqrt{x^2 + y^2} \to 0$ as $(x, y) \to 0$. Thus, f is continuous at $(0, 0)$. Since $t \mapsto \sin(t)$ is continuous for $c \in \mathbb{R}$, when $a \neq 0$,

$$D_{(a,b)}f(0,0) = \lim_{t \to 0} \frac{f(ta, tb) - f(0, 0)}{t}$$

$$= \lim_{t \to 0} \frac{\sqrt{t^2a^2 + t^2b^2} \sin \frac{t^2b^2}{ta}}{t} = \lim_{t \to 0} \sqrt{a^2 + b^2} \left| \sin \frac{tb^2}{a} \right| = 0.$$

Also, $D_{(0,b)}f(0,0) = \lim_{t \to 0} \frac{f(0,tb) - f(0,0)}{t} = \lim_{t \to 0} \frac{0-0}{t} = 0$. Thus, f has directional derivatives in every direction at $(0, 0)$. Note that $D_1f(0,0) = D_2f(0,0) = 0$ but the limit

$$\lim_{(x,y) \to (0,0)} \frac{f(x, y) - f(0, 0) - 0x - 0y}{\| (x, y) \|} = \lim_{(x,y) \to (0,0)} \frac{\sin \frac{y^2}{x}}{x}$$

does not exist (e.g., take $x \equiv y^3$ and let $y \to 0$). Thus, f is not differentiable at $(0, 0)$.

33. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is homogeneous, that is, $f(0) = 0$ and $f(tx) = tf(x)$ for all $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$. Prove that if f is differentiable, then $f(x) = \langle \nabla f(0), x \rangle$, in particular, f is linear.\footnote{f is linear if it is homogeneous and additive: $f(x+y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}^n$.} Thus, if f is homogeneous and not linear, it cannot be differentiable.

Solution. Let f be differentiable and homogeneous, and $u \in \mathbb{R}^n$ a unit vector. Then

$$0 = \lim_{t \to 0^+} \frac{f(tu) - f(0) - \langle \nabla f(0), tu \rangle}{\| tu \|} = \lim_{t \to 0^+} \frac{tf(u) - t\langle \nabla f(0), u \rangle}{t\| u \|} = f(u) - \langle \nabla f(0), u \rangle.$$

This shows that $f(u) = \langle \nabla f(0), u \rangle$ and thus for $t \in \mathbb{R}$,

$$f(tu) = tf(u) = t\langle \nabla f(0), u \rangle = \langle \nabla f(0), tu \rangle.$$

Any nonzero $x \in \mathbb{R}^n$ is a scalar times a unit vector, $x = \| x \| \frac{x}{\| x \|}$. Thus, we are done.

34. Let $f : \mathbb{R}^n \to \mathbb{R}$ be k times continuously differentiable, let $h \in \mathbb{R}^n$ and define $\phi(t) = f(x + th)$ for $t \in \mathbb{R}$. Prove that for all $s \in \mathbb{R}$,

$$\phi^{(k)}(s) = D_h^k f(x + sh), \quad D_h^k f = D_h D_h \ldots D_h f \quad \text{for } k \text{ times}.$$

Write formulas for $\phi^{(k)}(s) = D_h^k f(x + sh)$ when $k = 1$ and $k = 2$.\footnote{f is linear if it is homogeneous and additive: $f(x+y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}^n$.}
Solution. For \(k = 1 \) this follows from the computation
\[
\phi'(s) = \lim_{t \to 0} \frac{\phi(s + t) - \phi(s)}{t} = \lim_{t \to 0} \frac{f(x + (s + t)h) - f(x + sh)}{t} = \lim_{t \to 0} \frac{f((x + sh) + th) - f(x + sh)}{t} = D_h f(x + sh).
\]
The general case follows from induction: if \(\phi^{(k-1)}(s) = D^{k-1}_h f(x + sh) \) for all \(s \in \mathbb{R} \), then
\[
\phi^{(k)}(s) = \lim_{t \to 0} \frac{\phi^{(k-1)}(s + t) - \phi^{(k-1)}(s)}{t} = \lim_{t \to 0} \frac{D^{k-1}_h f(x + (s + t)h) - D^{k-1}_h f(x + sh)}{t} = \lim_{t \to 0} \frac{D^{k-1}_h f((x + sh) + th) - D^{k-1}_h f(x + sh)}{t} = D_h D^{k-1}_h f(x + sh) = D^k_h f(x + sh).
\]
When \(k = 1 \),
\[
\phi'(s) = D_h f(x + sh) = \sum_{i=1}^{n} h_i D_i f(x + sh) = \langle \nabla f(x + sh), h \rangle.
\]
When \(k = 2 \),
\[
\phi''(s) = D^2_h f(x + sh) = D_h \left(\sum_{j=1}^{n} h_j D_j f(x + sh) \right) = \sum_{i=1}^{n} h_i D_i \left(\sum_{j=1}^{n} h_j D_j f(x + sh) \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} h_i h_j D_i D_j f(x + sh) = \langle \nabla^2 f(x + sh) h, h \rangle,
\]
where the last step uses the fact that \(\langle Ah, h \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} h_i h_j a_{ij} \) when \(A \) is \(n \times n \).

35. Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by \(f(x, y) = e^{xy} + x^2 + 2xy \). Define \(\phi(t) = f(2t, 3t) \) for \(t \in \mathbb{R} \) and compute \(\phi''(0) \) in the following two ways:

i) By using single-variable theory, i.e., differentiating the single-variable function \(\phi \);

ii) By thinking of \(\phi''(0) \) as a directional derivative of \(f \) in the direction of \(h = (2, 3) \).

Solution. i) Note that \(\phi(t) = e^{6t^2} + 16t^2 \), so direct computation gives \(\phi''(0) = 44 \).

ii) By\(^3\) Problem 34, \(\phi''(0) = \langle \nabla^2 f(0,0) h, h \rangle \) where \(h = (2, 3) \). We compute
\[
\nabla^2 f(0,0) = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix}
\]
\(^3\)or formula (14.11) in the text
and $\langle \nabla^2 f(0,0)h,h \rangle = \langle (13,6), (2,3) \rangle = 44$.

36. Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be twice continuously differentiable. Suppose that $\nabla f(0,0) = (0,0)$ and that for some $h \in \mathbb{R}^2$, $\langle \nabla^2 f(0,0)h,h \rangle > 0$. Using single variable theory, prove there is $r > 0$ such that

$$f(th) > f(0,0), \quad 0 < |t| < r.$$

Solution. Define $\phi(t) = f(th)$. By Taylor’s theorem in 1D,

$$\phi(t) = \phi(0) + \phi'(0)t + \frac{1}{2}\phi''(0)t^2 + o(t^2)$$

where $\lim_{t \to 0} o(t^2)/t^2 = 0$. By Problem 34, this can be rewritten

$$f(th) = f(0,0) + \langle \nabla f(0,0), h \rangle t + \frac{1}{2}\langle \nabla^2 f(0,0)h,h \rangle t^2 + o(t^2).$$

Since $\nabla f(0,0) = (0,0)$, $\langle \nabla f(0,0), h \rangle = 0$ and we can rewrite again to get

$$\frac{f(th) - f(0,0)}{t^2} = \frac{1}{2}\langle \nabla^2 f(0,0)h,h \rangle + \frac{o(t^2)}{t^2}.$$

Since $\lim_{t \to 0} o(t^2)/t^2 = 0$ and $\langle \nabla^2 f(0,0)h,h \rangle > 0$, the RHS of this equation is positive for sufficiently small t. Thus, $f(th) > f(0,0)$ for sufficiently small t. More precisely, let $\epsilon = \frac{1}{2}\langle \nabla^2 f(0,0)h,h \rangle$ and choose $\delta > 0$ such that $|o(t^2)/t^2| < \epsilon$ whenever $0 < |t| < \delta$. Then $f(th) > f(0,0)$ for $0 < |t| < \delta$, so we can take $r = \delta$.

37. In Problem 36, suppose additionally that $\langle \nabla^2 f(0,0)h,h \rangle > 0$ for all nonzero $h \in \mathbb{R}^n$. Is this enough to directly conclude the origin is a local minimum of f?

Solution. We would have to show that $f(th) > f(0,0)$ for all $0 < |t| < r$, where r does not depend on h. The trouble with using Problem 36 here is that we had $r = r_h$ that depends on h. To get an r which is independent of h, we could try $r = \inf_h r_h$, but then we might get $r = 0$.

Note that in this situation the origin is indeed a local minimizer – see for instance Theorem 14.22. But this conclusion cannot be reached directly from Problem 36.

38. Let $a, b, c \in \mathbb{R}$ with $a \neq 0$, and define $p(t) = at^2 + 2bt + c$. Show that $p(t) > 0$ for all t if and only if $a > 0$ and $ac - b^2 > 0$. Show also that $p(t) < 0$ for all t if and only if $a < 0$ and $ac - b^2 > 0$.

13
Solution. The quadratic equation shows that \(p(t) = 0 \) when
\[
t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]
Suppose \(ac - b^2 > 0 \). Then \(p(t) = 0 \) has no solutions. So by the intermediate value theorem, either \(p(t) > 0 \) for all \(t \) or \(p(t) < 0 \) for all \(t \). To finish the proof, notice that \(\lim_{t \to \infty} p(t)/t^2 = a \). If \(a > 0 \) then \(p(t) > 0 \) for sufficiently large \(t \), hence for all \(t \); while if \(a < 0 \) then \(p(t) < 0 \) for sufficiently large \(t \), hence for all \(t \).

39. Find \(2 \times 2 \) matrices associated with the quadratic functions \(h(x, y) = x^2 - y^2 \) and \(g(x, y) = x^2 + 8xy + y^2 \).

Solution. They are
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}.
\]
With \(z = (x, y) \) we have \(h(z) = \langle Az, z \rangle \) and \(g(z) = \langle Bz, z \rangle \).

40. Define \(Q: \mathbb{R} \to \mathbb{R} \) by \(Q(x) = x^4 \). Show that there is no \(c > 0 \) such that \(Q(x) \geq cx^2 \) for all \(x \neq 0 \). Explain why this does not contradict Proposition 14.16.

Solution. For any \(c > 0 \), if \(x^2 < c \) then \(Q(x) = x^4 = x^2 x^2 < cx^2 \). This does not contradict Proposition 14.16 because \(Q \) is not a quadratic function: it cannot be written in the form \(Q(x) = \langle Ax, x \rangle \) for a matrix \(A \). (Such a matrix \(A \) would have to \(1 \times 1 \), and so \(\langle Ax, x \rangle \) would be a scalar constant times \(x^2 \).)

41. Show that the point \((-1, 1)\) is the minimizer of the function \(f: \mathbb{R}^2 \to \mathbb{R} \) defined by
\[
f(x, y) = (2x + 3y)^2 + (x + y - 1)^2 + (x + 2y - 2)^2.
\]

Solution. Notice \(\nabla f(x, y) = (12x + 18y - 6, 18x + 28y - 10) \) and
\[
\nabla^2 f(x, y) \equiv \begin{pmatrix} 12 & 18 \\ 18 & 28 \end{pmatrix}.
\]
In particular, \(\nabla f(x, y) = 0 \iff (x, y) = (-1, 1) \), and since \(12 > 0, 12 \cdot 28 - 18 \cdot 18 = 12 > 0 \), \(\nabla^2 f(x, y) \) is positive definite for all \((x, y) \). Thus, \(f \) has a local minimum at \((1, 1)\). We argue this must be a global minimum. Suppose to the contrary that \(f(r, s) < f(-1, 1) \). Let \(L(t) = (-1, 1) + t(r, s) \) and define \(g = f \circ L \). Since \(\nabla f(-1, 1) = (0, 0) \) and \(\nabla^2 f(x, y) \) is always positive definite, we have \(g'(0) = 0 \) and \(g''(t) > 0 \) for all \(t \in \mathbb{R} \). (To see this,
apply Theorem 14.12 or Problem 34 above.) Thus, 0 is a global minimum for g. But $g(1) = f(r, s) < f(-1, 1) = g(0)$, contradiction.

42. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable. Let $x \in \mathbb{R}^n$ be such that $\nabla f(x) = 0$. Suppose there are $u, v \in \mathbb{R}^n$ such that

$$\langle \nabla^2 f(x) u, u \rangle > 0, \quad \langle \nabla^2 f(x) v, v \rangle < 0.$$

Prove that x is neither a local maximum nor local minimum of f.

Solution. By the second order approximation theorem\(^4\)

$$f(x + tu) - f(x) = \langle \nabla f(x), tu \rangle + \frac{1}{2} \langle \nabla^2 f(x) tu, tu \rangle + o((tu)^2) = \frac{t^2}{2} \langle \nabla^2 f(x) u, u \rangle + o((tu)^2).$$

where $\lim_{t \to 0} o((tu)^2)/\|tu\|^2 = 0$. Rearranging, we find that

$$\frac{f(x + tu) - f(x)}{t^2} = \frac{1}{2} \langle \nabla^2 f(x) u, u \rangle + \frac{o((tu)^2)}{t^2}$$

where $\lim_{t \to 0} o((tu)^2)/t^2 = 0$. We can conclude that the LHS above is positive for sufficiently small t. An analogous argument shows the LHS of

$$\frac{f(x + tv) - f(x)}{t^2} = \frac{1}{2} \langle \nabla^2 f(x) v, v \rangle + \frac{o((tv)^2)}{t^2}$$

is negative for sufficiently small t. (We will not give ϵ-δ delta proofs here; see however similar proofs in Problems 29, 36 and 43 below.) Thus, f has a “saddle point” at x.

43. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, $\nabla f(x) = 0$, and $\nabla^2 f(x)$ is positive definite. Prove that there exist $c > 0$ and $\delta > 0$ such that

$$f(x + h) - f(x) \geq c \|h\|^2 \quad \text{if} \quad \|h\| < \delta.$$

Solution. By the second order approximation theorem,

$$f(x + h) - f(x) = \langle \nabla f(x), h \rangle + \frac{1}{2} \langle \nabla^2 f(x) h, h \rangle + o(h^2) = \frac{1}{2} \langle \nabla^2 f(x) h, h \rangle + o(h^2).$$

Thus,

$$\frac{f(x + h) - f(x)}{\|h\|^2} = \frac{1}{2} \left\langle \nabla^2 f(x) \frac{h}{\|h\|^2}, \frac{h}{\|h\|^2} \right\rangle + \frac{o(h^2)}{\|h\|^2}.$$
Let
\[c = \min_{u \in \mathbb{R}^n : \|u\| = 1} \frac{1}{4} \langle \nabla^2 f(x) u, u \rangle. \]

Notice the minimum above is attained at some \(u \) on the unit sphere \(\{ u \in \mathbb{R}^n : \|u\| = 1 \} \), since the unit sphere is sequentially compact. Since \(\nabla^2 f(x) \) is positive definite, this means that \(c > 0 \). Now choose \(\delta > 0 \) such that \(\frac{1}{\|h\|^2} |o(h^2)/\|h\|^2| < c \) whenever \(0 < \|h\| < \delta \).

Then if \(0 < \|h\| < \delta \), we have
\[
\frac{f(x+h) - f(x)}{\|h\|^2} = \frac{1}{2} \left\langle \nabla^2 f(x) \frac{h}{\|h\|}, \frac{h}{\|h\|} \right\rangle + \frac{o(h^2)}{\|h\|^2} \geq 2c - c = c.
\]

44. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is twice continuously differentiable. Suppose that \(\nabla f(x) = 0 \) and \(\nabla^2 f(x) \) is the matrix of all zeros. Show that \(x \) could be a local maximum, a local minimum, or neither.

Solution. Let \(n = 2 \) and consider the functions \(f(x, y) = -x^4 - y^4 \), \(f(x, y) = x^4 - y^4 \) and \(f(x, y) = x^4 + y^4 \); these functions all satisfy the assumptions above and they have, respectively, a local maximum, saddle point, and local minimum at \((0, 0)\).

45. Which of the following functions \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) are linear?
 i) \(f(x, y) = (-y, e^x) \)
 ii) \(f(x, y) = (x - y^2, 2y) \)
 iii) \(f(x, y) = 17(x, y) \)

Solution. In i), note that \(2f(1, 0) = (0, 2e) \neq (0, e^2) = f(2, 0) \), and in ii), notice \(2f(0, 1) = (-2, 4) \neq (-4, 4) = f(0, 2) \). So the functions in i) and ii) are not linear. The function in iii) is linear with matrix
\[
\begin{pmatrix} 17 & 0 \\ 0 & 17 \end{pmatrix}.
\]

46. Show there is no linear mapping \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) having the property that \(T(1, 1) = (4, 0) \) and \(T(-2, -2) = (0, 1) \).

Solution. Suppose \(T \) were linear with \(T(1, 1) = (4, 0) \) and \(T(-2, -2) = (0, 1) \). Then \((0, 0) = T(0, 0) = T(2(1, 1) + (-2, -2)) = 2T(1, 1) + T(-2, -2) = (8, 0) + (0, 1) = (8, 1) \), contradiction.
47. For a point \((x, y)\) in the plane \(\mathbb{R}^2\), define \(T(x, y)\) to be the point on the line \(\ell = \{(x, y) \in \mathbb{R}^2 : y = 2x\}\) that is closest to \((x, y)\). Show that \(T : \mathbb{R}^2 \to \mathbb{R}^2\) is linear and find its associated matrix.

Solution. Observe that \(T(x, y) = (r, 2r)\) where \(r\) is the minimizer of
\[
f(r) = (x - r)^2 + (y - 2r)^2.
\]
Notice \(f'(r) = 10r - 2x - 4y = 0\) if and only if \(r = x/5 + 2y/5\). Since \(f''(r) = 10 > 0\) for all \(r\), this is the unique global minimizer. Thus, \(T\) is linear with matrix
\[
\begin{pmatrix}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{pmatrix}.
\]

48. Suppose \(A\) is an \(m \times n\) matrix. Define \(f : \mathbb{R}^n \to \mathbb{R}^m\) by
\[
f(x) = Ax.
\]
Prove that \(Df(x) = A\) for all \(x \in \mathbb{R}^n\).

Solution. This follows from uniqueness of the derivative: since for every \(x \in \mathbb{R}^n\),
\[
\lim_{h \to 0} \frac{f(x + h) - f(x) - Ah}{\|h\|} = \lim_{h \to 0} \frac{A(x + h) - Ax - Ah}{\|h\|} = \lim_{h \to 0} \frac{0}{\|h\|} = 0,
\]
we must have \(Df(x) = A\) for every \(x \in \mathbb{R}^n\).

49. Give a proof of the first order approximation theorem based on the mean value theorem.

Solution. Suppose \(f : \mathbb{R}^n \to \mathbb{R}^m\) is continuously differentiable with component functions \(f_1, \ldots, f_m\). By the mean value theorem,
\[
f_i(x + h) - f_i(x) = \langle \nabla f_i(z^{(i)}), h \rangle,
\]
where \(z^{(i)}\) is on the line segment between \(x\) and \(x + h\). Let \(x\) be fixed and let \(B(h)\) be the matrix whose \(i\)th row is \(\nabla f_i(z^{(i)})\). Combining the component equations above,
\[
f(x + h) - f(x) = B(h)h.
\]
Thus,
\[
\lim_{h \to 0} \frac{f(x + h) - f(x) - Df(x)h}{\|h\|} = \lim_{h \to 0} \left[\frac{f(x + h) - f(x) - B(h)h}{\|h\|} + \frac{B(h)h - Df(x)h}{\|h\|} \right] = \lim_{h \to 0} \frac{B(h)h - Df(x)h}{\|h\|} = \lim_{h \to 0} [B(h) - Df(x)] \frac{h}{\|h\|}.
\]
Note \(\lim_{h \to 0} B(h) - Df(x) = 0 \) by continuity of partial derivatives of \(f \). Moreover, \(h/\|h\| \) is bounded. Thus, the limit above is 0. To see why, note that the generalized Cauchy-Schwartz inequality (Theorem 14.13) yields

\[
\lim_{h \to 0} \frac{\|B(h) - Df(x)\|}{\|h\|} \leq \lim_{h \to 0} \|B(h) - Df(x)\| = 0.
\]

50. Suppose \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) is continuously differentiable with \(f(x, y) = (\psi(x, y), \phi(x, y)) \). Define \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) by \(g(x, y) = \frac{1}{2}[\psi(x, y)^2 + \phi(x, y)^2] \). Show that \(Dg(x_0, y_0) = f(x_0, y_0)Df(x_0, y_0) \). Use this to show that if \((x_0, y_0) \) is a minimizer of \(g : \mathbb{R}^2 \to \mathbb{R} \) and \(Df(x_0, y_0) \) is invertible, then \(f(x_0, y_0) = 0 \).

Solution. Let \(h(x, y) = \frac{1}{2}[x^2 + y^2] \). Then \(g(x, y) = (h \circ f)(x, y) \). By the chain rule,

\[
Dg(x, y) = Dh(f(x, y))Df(x, y) = (\psi(x, y) \phi(x, y)) \begin{pmatrix} D_1 \psi(x, y) & D_2 \psi(x, y) \\ D_1 \phi(x, y) & D_2 \phi(x, y) \end{pmatrix} = f(x, y)Df(x, y).
\]

The result follows when \(x = x_0, y = y_0 \) by multiplying both sides above on the right by \(Df(x_0, y_0)^{-1} \) and using the fact that \(Dg(x_0, y_0) = 0 \) since \((x_0, y_0) \) is a minimizer of \(g \).

51. Suppose \(\psi : \mathbb{R}^2 \to \mathbb{R} \) is continuously differentiable and define \(g : \mathbb{R}^2 \to \mathbb{R} \) by

\[
g(s, t) = \psi(s^2t, s).
\]

Find \(\partial g/\partial s(s, t) \) and \(\partial g/\partial t(s, t) \).

Solution. By the chain rule,

\[
\frac{\partial g}{\partial s} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial s}, \quad \frac{\partial g}{\partial t} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial t}.
\]

That is,

\[
\frac{\partial g}{\partial s}(s, t) = D_1 \psi(s^2t, s)2st + D_2 \psi(s^2t, s),
\]

\[
\frac{\partial g}{\partial t}(s, t) = D_1 \psi(s^2t, s)s^2.
\]

52. Suppose \(g, h : \mathbb{R}^2 \) have continuous second derivatives and define

\[
u(s, t) = g(s - t) + h(s + t).
\]
Prove that
\[\frac{\partial^2 u}{\partial t^2}(s,t) - \frac{\partial^2 u}{\partial s^2}(s,t) = 0 \]
for all \((s,t) \in \mathbb{R}^2\).

Solution. By the chain rule,
\[\frac{\partial u(s,t)}{\partial s} = g'(s-t) + h'(s+t), \quad \frac{\partial u(s,t)}{\partial t} = -g'(s-t) + h'(s+t) \]
and
\[\frac{\partial^2 u}{\partial s}(s,t) = g''(s-t) + h''(s+t), \quad \frac{\partial^2 u}{\partial s}(s,t) = -(-g''(s-t)) + h''(s+t). \]
The result follows.

53. Let \(U, V \subset \mathbb{R}\) be open, suppose \(f : U \to V\) is differentiable and bijective, and let \(a \in U\) be such that \(f'(a) = 0\). Prove that \(f^{-1} : V \to U\) is not differentiable at \(b = f(a)\).

Solution. Suppose \(g := f^{-1}\) is differentiable at \(b\). Then by the chain rule,
\[(g \circ f)'(a) = g'(b)f'(a) = 0.\]
But \((g \circ f)(x) = x\) for all \(x \in U\), so that \((g \circ f)'(a) = 1\), contradiction.

54. For the following mappings \(f, g : \mathbb{R}^2 \to \mathbb{R}^2\), apply the inverse function theorem at the point \((0,0)\) and calculate the partial derivatives of the components of the inverse mapping at the points \(f(0,0)\) and \(g(0,0)\).

a) \(f(x, y) = (x + x^2 + e^{x^2 y^2}, -x + y + \sin(xy))\), b) \(g(x, y) = (e^{x+y}, e^{x-y})\).

Solution. Since
\[Df(0,0) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad Dg(0,0) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]
and \(f(0,0) = (1,0)\) and \(g(0,0) = (1,1)\), by the inverse function theorem
\[Df^{-1}(1,0) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad Dg^{-1}(1,1) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}. \]
The first (resp. second) row of \(Df^{-1}(1,0)\) contains the partial derivatives of the first (resp. second) component of \(f^{-1}\) at the point \((1,0)\), and similarly for \(g^{-1}\).
55. Define \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) by \(f(x, y) = (e^x \cos y, e^x \sin y) \). Show that the inverse function theorem applies at every point \((x, y) \in \mathbb{R}^2\), but that \(f \) is not one-to-one. Does the latter statement contradict the former?

Solution. Observe that
\[
Df(x, y) = \begin{pmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{pmatrix}
\]
and so \(\det Df(x, y) = e^x \neq 0 \) for all \((x, y) \in \mathbb{R}^2\). Thus, the inverse function applies at all \((x, y) \in \mathbb{R}^2\). However, \(f \) is not one-to-one since \(f(x, y) = f(x, y + 2\pi) \). There is no contradiction here: a function can be locally invertible at every point without having a global inverse.

56. For a pair of real numbers \(a, b \), consider the system of nonlinear equations
\[
\begin{align*}
x + x^2 \cos y + xy e^{3y^2} &= a, \\
y + x^5 + y^3 - x^2 \cos(xy) &= b.
\end{align*}
\]
(8)

Use the inverse function theorem to show that there is some positive number \(r \) such that if \(a^2 + b^2 < r^2 \), then this system of equations has at least one solution.

Solution. Let \(f(x, y) = (x + x^2 \cos y + xy e^{3y^2}, y + x^5 + y^3 - x^2 \cos(xy)) \). Then
\[
Df(x, y) = \begin{pmatrix} 1 + 2x \cos y + ye^{3y^2} + 3x^3 ye^{3y^2} & -x^2 \sin y + xe^{3y^2} + 2xy^2 e^{3y^2} \\ 5x^4 - 2x \cos(xy) + x^2 y \sin(xy) & 1 + 3y^2 + x^2 \sin(xy) \end{pmatrix}
\]
and so
\[
Df(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]
which is nonsingular. So by the inverse function theorem, there are neighborhoods \(U \) of \((0, 0)\) and \(V \) of \(f(0, 0) = (0, 0) \) such that \(f : U \to V \) is invertible. Thus, the system of equations can be solved when \((a, b) \in V \) (uniquely, if one considers only \((x, y) \in U\)). Since \(V \) is open we may pick \(r > 0 \) such that \(B_r(0, 0) \subset V \), which completes the proof.

57. Suppose \(\psi : \mathbb{R}^2 \to \mathbb{R} \) is continuously differentiable and define \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) by
\[
f(x, y) = (\psi(x, y), -\psi(x, y)).
\]

Explain both geometrically and analytically why the hypotheses of the inverse function theorem must fail for \(f \) at every point \((x, y) \in \mathbb{R}^2\).

Solution. The analytic explanation is that
\[
\det Df(x, y) = \begin{vmatrix} D_1 \psi(x, y) & D_2 \psi(x, y) \\ -D_1 \psi(x, y) & -D_2 \psi(x, y) \end{vmatrix} = 0
\]
for every \((x, y)\). The geometric explanation is that \(\text{Im } f\) is the line \(y = x\), which is one-dimensional, and an injective continuous function defined on the plane cannot have a 1-dimensional image.

58. Define \(f(x) = x^n\) for \(x \in \mathbb{R}\). Prove that \(f\) is bijective if \(n \geq 1\) is odd. Then show that \(f\) is not stable if \(n > 1\).

\textit{Solution.} Let \(n \geq 1\) be odd. To see that \(f\) is onto, let \(y \in \mathbb{R}\). By the intermediate value theorem there is \(x\) between 0 and \(\sqrt[y]{y}\) such that \(f(x) = y\). To see that \(f\) is one-to-one, suppose \(f(a) = f(b) > 0\) for \(a \neq b\). Then \(a, b > 0\) since \(n\) is odd, and by the mean value theorem there is \(c\) between \(a\) and \(b\) such that \(f'(c) = nc^{n-1} = 0\), a contradiction since \(c > \min\{a, b\} > 0\). Similarly, \(f(a) = f(b) < 0\) only if \(a = b\). The other possibility is that \(f(a) = f(b) = 0\), but \(f(x) = x^n = 0\) only when \(x = 0\). To see that \(f\) is not stable when \(n > 1\), we use the difference of powers formula

\[f(x) - f(y) = x^n - y^n = (x - y) \sum_{i=0}^{n-1} x^{n-1-i} y^i. \]

Suppose \(f\) were stable with constant \(c\). If \(y = 2x\) where \(0 < x < \sqrt[n]{c/(2n)}\), then

\[\left| \frac{f(x) - f(y)}{x - y} \right| = \left| \sum_{i=0}^{n-1} x^{n-1-i} y^i \right| = 2n x^{n-1} < c, \]

contradiction.

59. Let \(f : (a, b) \to \mathbb{R}\) be differentiable. Prove that \(f\) is stable with stability constant \(c\) if and only if \(|f'(x)| \geq c\) for all \(x \in (a, b)\).

\textit{Solution.} Suppose that \(|f'(x)| \geq c\) for all \(x \in (a, b)\). If there were \(x, y \in (a, b)\) such that

\[|f(x) - f(y)| < c|x - y| \]

then by the mean value theorem there would be a point \(r\) between \(x\) and \(y\) such that \(|f'(r)| = |f(x) - f(y)|/|x - y| < c\), contradiction. Thus, \(f\) must be stable. Conversely, suppose \(f\) is stable with constant \(c\). Then \(|f(x) - f(y)| \geq c|x - y|\) for all \(x, y \in (a, b)\) and so

\[|f'(y)| = \lim_{x \to y} \frac{f(x) - f(y)}{x - y} \geq c. \]

60. Define \(g(x, y) = (x^2, y)\) for \((x, y) \in \mathbb{R}^2\). Show there is no neighborhood of \((0, 0)\) such that \(g : \mathbb{R}^2 \to \mathbb{R}^2\) is stable.
Suppose \(g \) were stable with stability constant \(c \). Then for \(x \in \mathbb{R} \) such that \(0 < |x| < c \),

\[
\frac{\|g(x,0) - g(0,0)\|}{\|(x,0) - (0,0)\|} = \frac{x^2}{|x|} = |x| < c,
\]

contradiction.

61. Is the sum of stable mappings also a stable mapping?

Solution. No. For example, \(f(x) = x \) and \(g(x) = -x \), defined for \(x \in \mathbb{R} \), are both stable, but \(f + g \equiv 0 \) is not.

62. Let \(U \subset \mathbb{R}^n \) be open and suppose \(f : U \to \mathbb{R}^n \) is continuously differentiable and stable. Prove for each \(x \in U \), \(Df(x) \) is nonsingular.

Solution. Let \(x \in U \). By the first order approximation theorem,

\[
f(x + h) - f(x) = Df(x)h + o(h).
\]

Suppose \(f \) has stability constant \(c \). Then

\[
\|Df(x)h\| \geq \|Df(x)h + o(h)\| - \|o(h)\|
\]

\[
= \|f(x + h) - f(x)\| - \|o(h)\| \geq c\|h\| - \|o(h)\|.
\]

Thus,

\[
\left| \frac{Df(x)}{\|h\|} \right| \geq c - \frac{\|o(h)\|}{\|h\|} \to c \quad \text{as } h \to 0.
\]

This shows that \(Df(x)u \neq 0 \) for all unit vectors \(u \). It follows that \(Df(x) \) is nonsingular.

63. For a point \((\rho, \theta, \phi) \in \mathbb{R}^3\), define

\[
f(\rho, \theta, \phi) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi).
\]

At what points does the inverse function apply to \(f \)?

Solution. Since

\[
\det Df(\rho, \theta, \phi) = \begin{vmatrix}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\cos \phi & 0 & -\rho \sin \phi \\
\end{vmatrix}
= \cos \phi \begin{vmatrix}
-\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\end{vmatrix}
= -\rho^2 \sin \phi \cos^2 \phi - \rho^2 \sin^3 \phi = -\rho^2 \sin \phi,
\]

22
the inverse function theorem applies when \(\rho \neq 0 \) and \(\phi \) is not an integer multiple of \(\pi \).

64. Define \(f(x) = x^2 \) for \(x \in \mathbb{R} \).

 a) Show that if \(U \subset \mathbb{R} \) is open and \(0 \notin U \), then \(f(U) \) is open.

 b) Show that if \(U \subset \mathbb{R} \) is open and \(0 \in U \), then \(f(U) \) is not open.

Solution.

a) Any open set \(U \subset \mathbb{R} \) is a union of open intervals. Thus, we only have to show that if \(U = (a, b) \subset \mathbb{R} \) and \(0 \notin (a, b) \), then \(f(U) \) is open. If \(0 < a < b \) and \(U = (a, b) \), then \(f(U) = (f(a), f(b)) \), while if \(a < b < 0 \) and \(U = (b, a) \), then \(f(U) = (f(b), f(a)) \).

b) Let \(U \subset \mathbb{R} \) with \(0 \in U \). Then \(0 \in f(U) \) but for every \(\epsilon > 0 \), \((-\epsilon, \epsilon) \notin f(U) \) since the image of \(f \) contains no negative numbers. Thus, \(f(U) \) is not open.

65. Give an example of a continuously differentiable mapping \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) with the property that there is no open subset \(U \subset \mathbb{R}^n \) such that \(f(U) \) is open.

Solution. Let \(f(x) \equiv 0 \). \(f \) is continuously differentiable (since it is linear), but for every open \(U \subset \mathbb{R}^n \), \(f(U) = \{0\} \) is not open.

66. Consider the equation \(x^2 + y^2 = 0 \) for \((x, y) \in \mathbb{R}^2 \). Show that the assumptions of Dini’s Theorem do not hold at the point \((0, 0)\). Explain geometrically why the conclusion of Dini’s theorem does not hold at \((0, 0)\).

Solution. Let \(f(x, y) = x^2 + y^2 \). Since \(D_1 f(0, 0) = D_2 f(0, 0) = 0 \), the assumptions of Dini’s theorem do not hold at \((0, 0)\). Note that the solution set for \(x^2 + y^2 = 0 \) consists only of the point \((0, 0)\). Thus, \(y \) cannot be written as a function of \(x \) (or vice-versa) on an open set containing 0.

67. Consider the equation

\[
e^{2x-y} + \cos(x^2 + xy) - 2 - 2y = 0, \quad (x, y) \in \mathbb{R}^2.
\]

Does the set of solutions of this equation in a neighborhood of the solution \((0, 0)\) implicitly define \(x \) as a function of \(y \) or vice-versa? If so, compute the derivative of this function(s) at the point 0.

Solution. Let \(f(x, y) = e^{2x-y} + \cos(x^2 + xy) - 2 - 2y \) and note that

\[
\nabla f(x, y) = (2e^{2x-y} - (2x + y) \sin(x^2 + xy), -e^{2x-y} - x \sin(x^2 + xy) - 2).
\]
Thus, $D_1 f(0,0) = 2 \neq 0$ and $D_2 f(0,0) = -3 \neq 0$. So the set of solutions defines x as a function of y, and vice-versa, in a neighborhood of $(0,0)$. Writing ψ and ϕ for these functions, respectively, we have

\begin{align*}
D_1 f(\psi(x), x) \psi'(x) + D_2 f(\psi(x), x) &= 0, \\
D_1 f(x, \phi(x)) + D_2 f(x, \phi(x)) \phi'(x) &= 0,
\end{align*}

for x in a neighborhood of 0. Thus,

\begin{align*}
\psi'(0) &= -\frac{D_2 f(0,0)}{D_1 f(0,0)} = \frac{3}{2}, \\
\phi'(0) &= -\frac{D_1 f(0,0)}{D_2 f(0,0)} = \frac{2}{3}.
\end{align*}

68. Let $O \subset \mathbb{R}^2$ be open and $f : O \to \mathbb{R}$ continuously differentiable. Suppose that $f(a,b) = 0$ and $\nabla f(a,b) \neq (0,0)$. Show that $\nabla f(a,b)$ is orthogonal to the tangent line at (a,b) of the implicitly defined function.

Solution. Since $\nabla f(a,b) \neq (0,0)$, we can assume without loss of generality that $D_2 f(a,b) \neq 0$. So by Dini’s theorem, in a neighborhood of (a,b) the equation $f(x,y) = 0$ implicitly defines $y = \phi(x)$ and moreover

\[D_1 f(x, \phi(x)) + D_2 f(x, \phi(x)) \phi'(x) = 0. \]

Setting $x = a$, this rewrites as

\[\langle \nabla f(a,b), (1, \phi'(a)) \rangle = 0. \]

Observe that $(1, \phi'(a))$ is the tangent line to the implicitly defined function at $x = a$, since in a neighborhood of (a,b) the graph of that function is the curve $x \mapsto (x, \phi(x))$.

69. Suppose the function $\phi : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and that $\phi'(a) \neq 0$. Set $b = \phi(a)$ and define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = y - \phi(x)$ for $(x,y) \in \mathbb{R}^2$. Apply Dini’s theorem to the function $f : \mathbb{R}^2 \to \mathbb{R}$ at the point (a,b) and compare the result with the conclusion of the Inverse Function Theorem applied to ϕ at a.

Solution. Since $D_1 f(a,b) = -\phi'(a) \neq 0$, by Dini’s theorem, there is a continuously differentiable function ψ defined on a neighborhood of b such that $x = \psi(y)$ uniquely solves the equation $f(x,y) = y - \phi(x) = 0$ in a neighborhood of (a,b). Thus, for y in a neighborhood of b, $\psi(y) = \phi^{-1}(y)$ and

\[0 = D_1 f(\psi(y), y) \psi'(y) + D_2 f(\psi(y), y) = -\phi'(\phi^{-1}(y))(\phi^{-1})'(y) + 1. \quad (9) \]
Since $\phi'(a) \neq 0$, the Inverse Function Theorem shows that in a neighborhood of b, ϕ has a continuously differentiable inverse and for y in this neighborhood,

$$ (\phi^{-1})'(y) = \phi'(\phi^{-1}(y))^{-1}. $$

(10)

Observe that equations (9) and (10) are simply rearrangements of one another.

70. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable and $c > 0$ is such that

$$ D_2 f(x, y) \geq c \quad \text{for all } (x, y) \in \mathbb{R}^2. $$

(11)

Prove there is a continuously differentiable function $g : \mathbb{R} \to \mathbb{R}$ such that $f(x, g(x)) = 0$ for all $x \in \mathbb{R}$ and if $f(x, y) = 0$, then $y = g(x)$.

Solution. Fix x and define $\phi : \mathbb{R} \to \mathbb{R}$ by $\phi(y) = f(x, y)$. The assumption (11) implies $\phi'(y) \geq c > 0$. Thus, ϕ has a unique root (why?), call it $g(x)$. That is,

$$ \phi(g(x)) = f(x, g(x)) = 0. $$

Uniqueness of the root (for arbitrary x) shows that if $f(x, y) = 0$ then $y = g(x)$. To see that g is continuously differentiable at an arbitrary point $a \in \mathbb{R}$, note that by (11), Dini’s theorem holds at the point $(a, g(a))$. Since g is unique, it must agree with the implicit function furnished by Dini’s theorem in a neighborhood of a. Since the latter function is continuously differentiable at a, so is g.

71. Consider the linear system of equations

$$ a_{11}x + a_{12}y + a_{13}z = 0, $$

$$ a_{21}x + a_{22}y + a_{23}z = 0, $$

$(x, y, z) \in \mathbb{R}^3$.

(12)

Define $\nu = (a_{11}, a_{12}, a_{13})$ and $\beta = (a_{21}, a_{22}, a_{23})$. Show that if $\nu \times \beta \neq (0, 0, 0)$, then the equations (12) defines two of the variables as a function of the remaining variable. Interpret this geometrically.

Solution. Define

$$ f(x, y, z) = (a_{11}x + a_{12}y + a_{13}z, a_{21}x + a_{22}y + a_{23}z) $$

and observe that

$$ \nu \times \beta = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} (1, 0, 0) - \begin{vmatrix} a_{11} & a_{13} \\ a_{12} & a_{23} \end{vmatrix} (0, 1, 0) + \begin{vmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} (0, 0, 1) $$

$$ = |D_{(y,z)}f(x, y, z)|(1, 0, 0) - |D_{(x,z)}f(x, y, z)|(0, 1, 0) + |D_{(x,y)}f(x, y, z)|(0, 0, 1). $$

25
Since $\nu \times \beta \neq (0, 0, 0)$, one of the determinants above must be nonzero. Thus, the Implicit Function Theorem shows that (12) implicitly defines two of the variables as a function of the third. Geometrically, each equation of (12) represents a plane in \mathbb{R}^3, and the assumption $\nu \times \beta \neq (0, 0, 0)$ guarantees that these two planes are not parallel. Thus, the planes intersect in a line, which is why we can solve for two of the variables as a function of the third.

72. Consider the solutions of the equation $y^3 - x^2 = 0$ for $(x, y) \in \mathbb{R}^2$. Does the Implicit Function Theorem apply at the point $(0, 0)$? Does this equation define one of the components of a solution (x, y) as a function of the other component?

Solution. The hypotheses of the Implicit Function Theorem do not hold at $(0, 0)$: letting $f(x, y) = y^3 - x^2$, we have $D_1f(0, 0) = D_2f(0, 0) = 0$. However, the equation $f(x, y) = 0$ does define y as a function of x, namely $y = x^{2/3}$. (Note, however, that y is not a continuously differentiable function of x.)