Homework B

Due Wednesday, November 2, in class (else by email)

Problems.

- 1. For each of the following topological spaces X, find an open cover of X which does not contain a finite subcover. You do not need to prove that your answer is correct. It follows that each of the below spaces X is not compact.
 - (a) $X = \mathbb{R}$.
 - (b) $X = \mathbb{Z}$ with the discrete topology (meaning every subset of \mathbb{Z} is an open set).
 - (c) X = (-1, 1).
 - (d) $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}.$
- 2. For each of the four non-compact spaces X in #1 (a)–(d) above, write down a continuous function $f: X \to \mathbb{R}$ that has no upper bound, i.e., such that $\sup_{x \in X} f(x) = \infty$. Also, write down a continuous function $g: X \to \mathbb{R}$ that has a finite supremum that is not attained. You do not need to prove that your answers are correct. Note this would not be possible if X were compact.
- 3. (Intermediate value theorem). Let $a, b \in \mathbb{R}$ with a < b, and let $f: [a, b] \to \mathbb{R}$ be a continuous map with f(a) < 0 and f(b) > 0. Use the connectedness of [a, b] to prove that there exists some point $c \in [a, b]$ with f(c) = 0.
- 4. Suppose $X = A \cup B$ where A is path-connected, B is path-connected, and $A \cap B \neq \emptyset$. Prove that X is path-connected.
- 5. Define $id: S^1 \to S^1$ by id(p) = p, and define $g: S^1 \to S^1$ by g(p) = -p. Find a homotopy $H: S^1 \times I \to S^1$ from id to g.

Notational aside: It's perhaps easiest to represent S^1 using complex coordinates, $S^1 = \{e^{i\theta}\} \subseteq \mathbb{C}$, where θ varies between 0 and 2π . Then $id(e^{i\theta}) = e^{i\theta}$ and $g(e^{i\theta}) = -e^{i\theta} = e^{i(\theta+\pi)}$.