Duke Math 431
Spring 2015

Why is the definition of two sets having the same cardinality symmetric?

Two sets S and T have the same cardinality if there is a one-to-one and onto function $f: S \rightarrow T$. At first this doesn't feel symmetric. Is it okay to instead give a one-to-one and onto function $g: T \rightarrow S$? Does the existence of one such function imply the existence of the other?

The answer to both questions is yes. To see why, note that if you give a one-to-one and onto function $f: S \rightarrow T$, then the inverse function f^{-1} is a one-to-one and onto function in the opposite direction, $f^{-1}: T \rightarrow S$. Alternatively, if you give a one-to-one and onto function $g: T \rightarrow S$, then the inverse function g^{-1} is a one-to-one and onto function in the opposite direction, $g^{-1}: S \rightarrow T$.

In particular, recall that a set is countable if it has the cardinality of \mathbb{N}, the set of natural numbers. To show that a set S is countable, it is fine to give either a one-to-one and onto function $f: \mathbb{N} \rightarrow S$, or alternatively to give a one-to-one and onto function $g: S \rightarrow \mathbb{N}$.

