Duke Math 431
Spring 2015

Proof that zero is less than one

In this note we will prove that $0<1$. In order to do so we first need a lemma.
Lemma. For any real number x we have $x^{2} \geq 0$.

Proof. We will consider two cases: $x \geq 0$ and $x<0$. In the first case $x \geq 0$ we have

$$
\begin{aligned}
x^{2} & =x \cdot x & & \\
& \geq 0 \cdot 0 & & \text { by }(\mathrm{O} 5) \\
& =0 & & \text { by } \S 1.1 \# 4 .
\end{aligned}
$$

In the second case $x<0$ we have $-x \geq 0$ by Proposition 1.1.1(d), and hence

$$
\begin{aligned}
x^{2} & =x \cdot x & & \\
& =(-x)(-x) & & \text { by Proposition } 1.1 .1(\mathrm{c}) \\
& \geq 0 \cdot 0 & & \text { by }(\mathrm{O} 5) \text { since }-x \geq 0 \\
& =0 & & \text { by } \S 1.1 \# 4 .
\end{aligned}
$$

Hence for any real number x we have $x^{2} \geq 0$.

Claim. We have $0<1$.

Proof. First we will show $0 \leq 1$. To see this, note that

$$
\begin{array}{rlrl}
1 & =1 \cdot 1 & & \text { by (P7) } \\
\geq 0 & & \text { by our Lemma above. }
\end{array}
$$

Now it suffices to show that $0 \neq 1$. Indeed, suppose for a contradiction that $0=1$. Choose any real number $x \neq 0$ that is nonzerd 1 . Note that we have

$$
\begin{aligned}
x & =x \cdot 1 & & \text { by }(\mathrm{P} 7) \\
& =x \cdot 0 & & \text { since we've assumed for a contradiction that } 0=1 \\
& =0 & & \text { by } \S 1.1 \text { Problem } \# 4 .
\end{aligned}
$$

This contradicts the fact that we chose $x \neq 0$, and hence it must be the case that $0 \neq 1$.
We have shown $0 \leq 1$ and $0 \neq 1$, and together these imply $0<1$.

[^0]
[^0]: ${ }^{1}$ Here we've assumed that not all real numbers are zero.

