Duke Math 431 Spring 2015

Proof that zero is less than one

In this note we will prove that 0 < 1. In order to do so we first need a lemma.

Lemma. For any real number x we have $x^2 \ge 0$.

Proof. We will consider two cases: $x \ge 0$ and x < 0. In the first case $x \ge 0$ we have

$x^2 = x \cdot x$	
$\geq 0 \cdot 0$	by $(O5)$
= 0	by $\S1.1 \#4.$

In the second case x < 0 we have $-x \ge 0$ by Proposition 1.1.1(d), and hence

$x^2 = x \cdot x$	
= (-x)(-x)	by Proposition $1.1.1(c)$
$\geq 0 \cdot 0$	by (O5) since $-x \ge 0$
= 0	by $\S1.1 \#4.$

Hence for any real number x we have $x^2 \ge 0$.

Claim. We have 0 < 1.

Proof. First we will show $0 \leq 1$. To see this, note that

 $1 = 1 \cdot 1 \qquad by (P7)$ $\geq 0 \qquad by our Lemma above.$

Now it suffices to show that $0 \neq 1$. Indeed, suppose for a contradiction that 0 = 1. Choose any real number $x \neq 0$ that is nonzero¹. Note that we have

$x = x \cdot 1$	by (P7)
$= x \cdot 0$	since we've assumed for a contradiction that $0=1$
= 0	by $\S1.1$ Problem #4.

This contradicts the fact that we chose $x \neq 0$, and hence it must be the case that $0 \neq 1$.

We have shown $0 \le 1$ and $0 \ne 1$, and together these imply 0 < 1.

¹Here we've assumed that not all real numbers are zero.