Duke Math 431
Spring 2015

Proof of Theorem 2.2.6

Theorem 2.2.6. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences and suppose that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$. Suppose that $b \neq 0$ and $b_{n} \neq 0$ for any n. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$.

Proof. First we show there is some M with $0<M \leq\left|b_{n}\right|$ for all n. Since $b_{n} \rightarrow b$, there is some N with $\left|b_{n}-b\right| \leq \frac{|b|}{2}$ for all $n \geq N$. This implies $\left|b_{n}\right| \geq \frac{|b|}{2}$ for all $n \geq N$, for otherwise $\left|b_{n}\right|<\frac{|b|}{2}$ would give the contradiction

$$
|b|=\left|b_{n}-\left(b_{n}-b\right)\right| \leq\left|b_{n}\right|+\left|b_{n}-b\right|<\frac{|b|}{2}+\frac{|b|}{2}=|b| .
$$

Hence $M=\min \left\{\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{n}\right|, \frac{|b|}{2}\right\}$ gives $0<M \leq\left|b_{n}\right|$ for all n.
Now let $\epsilon>0$ be arbitrary. Since $a_{n} \rightarrow a$ we may pick N_{1} so that $n \geq N_{1}$ gives $\left|a_{n}-a\right| \leq \frac{\epsilon M}{2}$. Since $b_{n} \rightarrow b$ we may pick N_{2} so that $n \geq N_{2}$ gives $\left|b_{n}-b\right| \leq \frac{\epsilon|b| M}{2|a|}$. Let $N=\max \left\{N_{1}, n_{2}\right\}$. Then $n \geq N$ gives

$$
\begin{array}{rlr}
\left|\frac{a_{n}}{b_{n}}-\frac{a}{b}\right| & =\left|\frac{a_{n} b-a b_{n}}{b b_{n}}\right| \\
& \leq \frac{\left|a_{n} b-a b_{n}\right|}{|b| M} \\
& =\frac{\left|\left(a_{n} b-a b\right)+\left(a b-a b_{n}\right)\right|}{|b| M} \\
& \leq \frac{\left|a_{n}-a\right||b|}{|b| M}+\frac{|a|\left|b_{n}-b\right|}{|b| M} & \text { by the triangle inequality (Proposition 1.1.2(c)) } \\
& =\frac{\left|a_{n}-a\right|}{M}+\frac{|a|\left|b_{n}-b\right|}{|b| M} & \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} & \text { by choice of } N \\
& =\epsilon . &
\end{array}
$$

Hence we have shown $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$.

