Duke Math 431
Spring 2015

Proof of Corollary 3.3.6

Corollary 3.3.6. Let f be a continuous function on the interval $[a, b]$. Then,

$$
\left|\int_{a}^{b} f(x) d x\right| \leq(b-a) \sup _{[a, b]}|f(x)| .
$$

Proof. We have

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) d x\right| & \leq \int_{a}^{b}|f(x)| d x & & \text { by Theorem 3.3.5 } \\
& \leq \int_{a}^{b} \sup _{[a, b]}|f(x)| d x & & \text { by Theorem 3.3.4, since } f(x) \leq \sup _{[a, b]}|f(x)| \\
& =\sup _{[a, b]}|f(x)| \int_{a}^{b} 1 d x & & \text { by Theorem 3.3.3, since } \sup _{[a, b]}|f(x)| \text { is a constant } \\
& =(b-a) \sup _{[a, b]}|f(x)| . & &
\end{aligned}
$$

