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• This is the Practice Midterm 2 for Duke Math 431. Partial credit is available. No
notes, books, calculators, or other electronic devices are permitted.

• Write proofs that consist of complete sentences, make your logic clear, and justify all
conclusions that you make.
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“I have abided with all aspects of the honor code on this examination.”
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1 (a) Give an example of a function f and a domain D so that f : D → R is continuous
but not uniformly continuous. No proofs are necessary.

Solution. The function f : R → R given by f(x) = x2 is continuous but not
uniformly continuous.

(b) Give an example of a function f : [0, 1]→ R that is not Riemann integrable.

Solution. Recall from §3.3 #1 that the function f : [0, 1]→ R given by

f(x) =

{
0 if x is irrational

1 if x is rational

is not Riemann integrable.

(c) Suppose f is n times continuously differentiable on [a, b] and that f (n+1) exists.
Let T (n)(x, x0) be the n-th Taylor polynomial of f at x0. State the conclusion of
Taylor’s Theorem.

Solution. Under these hypotheses, for all x ∈ [a, b] with x 6= x0 there exists a ξ
between x and x0 such that

f(x) = T (n)(x, x0) +
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.
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2 Suppose f : R → R and g : R → R are continuously differentiable, that f(0) = g(0),
and that f ′(x) ≤ g′(x) for all x ≥ 0. Prove that f(x) ≤ g(x) for all x ≥ 0.

Solution. Let x ≥ 0. We have

f(x)− f(0) =

∫ x

0

f ′(t)dt by the Part I of the Fundamental Theorem (Theorem 4.2.4)

≤
∫ x

0

g′(t)dt by Theorem 3.3.4

= g(x)− g(0) by the Part I of the Fundamental Theorem (Theorem 4.2.4).

Since f(0) = g(0), this implies that f(x) ≤ g(x) for all x ≥ 0.
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3 Suppose f : R→ R is continuously differentiable and that its derivative f ′ is bounded.
Prove that f is uniformly continuous on R.

Solution. Since f ′ is bounded, there exists some M ∈ R so that |f ′(x)| ≤ M for all
x ∈ R. Note that if x, c ∈ R, then by the Mean Value Theorem there exists some d
between x and c satisfying f ′(d) = f(x)−f(c)

x−c . Hence we have

|f(x)− f(c)| = |f ′(d)||x− c| ≤M |x− c|.

Hence given any ε > 0, choose δ = ε
M

. Then note that|x− c| ≤ δ = ε
M

implies

|f(x)− f(c)| ≤M |x− c| ≤M
ε

M
= ε.

We have shown that f is uniformly continuous.
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4 Suppose that f : R→ R is differentiable at x. Prove that limh→0
f(x+h)−f(x−h)

2h
= f ′(x).

Solution. Suppose ε > 0. Since limh→0
f(x+h)−f(x)

h
= f ′(x) exists, there is a δ > 0

such that |f ′(x) − f(x+h)−f(x)
h

| ≤ ε if 0 < |h| ≤ δ (see the top of page 122). Hence if
0 < |h| ≤ δ then we have∣∣∣f(x+ h)− f(x− h)

2h
− f ′(x)

∣∣∣ =
∣∣∣(f(x+ h)− f(x)

2h
− f ′(x)

2

)
+
(f(x)− f(x− h)

2h
− f ′(x)

2

)∣∣∣
≤
∣∣∣f(x+ h)− f(x)

2h
− f ′(x)

2

∣∣∣+
∣∣∣f(x)− f(x− h)

2h
− f ′(x)

2

∣∣∣
=

1

2

∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣+
1

2

∣∣∣f(x)− f(x− h)

h
− f ′(x)

∣∣∣
=

1

2

∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣+
1

2

∣∣∣f(x+ (−h))− f(x)

(−h)
− f ′(x)

∣∣∣
≤ ε

2
+
ε

2
= ε.

We have shown limh→0
f(x+h)−f(x−h)

2h
= f ′(x).

Remark: You could also prove this limit by considering an arbitrary sequence hn → 0
with hn 6= 0.
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5 Let f : [0, 3]→ R be defined by

f(x) =


1 0 ≤ x ≤ 1

0 1 < x < 2

2 x = 2

1 2 < x ≤ 3

Prove that f is Rieman integrable and compute
∫ 3

0
f(x)dx.

Solution. Consider the partition P given by 0 < 1
N
< 2

N
< . . . < 3N−1

N
< 3 for some

N ∈ N. Note

UP (f)− LP (f) =
3N∑
i=1

(Mi −mi)
1

N

=
1

N

3N∑
i=1

(Mi −mi)

=
1

N

[
(MN+1 −mN+1) + (M2N −m2N) + (M2N+1 −m2N+1)

]
since all other terms are zero

=
1

N

[
(1− 0) + (2− 0) + (2− 1)

]
=

4

N
.

Hence given any ε > 0, choose N ∈ N so that N ≥ 4
ε
. This gives UP (f)− LP (f) ≤ ε,

and hence by Lemma 3.3 we have shown that f is Riemann integrable.

To compute
∫ 3

0
f(x)dx, note

UP (f) =
3N∑
i=1

Mi
1

N

=
1

N

3N∑
i=1

Mi

=
1

N

[
(1)(N + 1) + (0)(N − 2) + (2)(2) + (1)(N − 1)

]
=

2N + 4

N
.

Hence Corollary 3.3.2 gives∫ 3

0

f(x)dx = lim
N→∞

UP (f) = lim
N→∞

2N + 4

N
= 2.
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6 Let f be a continuous function on the interval [a, b]. Suppose that for every c ∈ [a, b]

and d ∈ [a, b] we know that
∫ d
c
f(x)dx = 0. Prove that f(x) = 0 for all x.

Solution. Suppose for a contradiction that f(y) 6= 0 for some y ∈ [a, b]. We’ll assume
f(y) > 0; the case f(y) < 0 is analogous. Since f is continuous, there exists some δ > 0

such that |x − y| ≤ δ implies |f(x) − f(y)| ≤ f(y)
2

, and hence f(x) ≥ f(y)
2

. Therefore
we have

0 =

∫ y+δ

y−δ
f(x)dx ≥

∫ y+δ

y−δ

f(y)

2
dx =

f(y)

2

∫ y+δ

y−δ
1dx =

f(y)

2
2δ = f(y)δ > 0.

This is a contradiction, and hence it must be the case that f(x) = 0 for all x.


