Name: \qquad

- This is the Practice Midterm 2 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:
"I have abided with all aspects of the honor code on this examination."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

(a) Give an example of a function f and a domain D so that $f: D \rightarrow \mathbb{R}$ is continuous but not uniformly continuous. No proofs are necessary.

Solution. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is continuous but not uniformly continuous.
(b) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is not Riemann integrable.

Solution. Recall from $\S 3.3 \# 1$ that the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ 1 & \text { if } \mathrm{x} \text { is rational }\end{cases}
$$

is not Riemann integrable.
(c) Suppose f is n times continuously differentiable on $[a, b]$ and that $f^{(n+1)}$ exists. Let $T^{(n)}\left(x, x_{0}\right)$ be the n-th Taylor polynomial of f at x_{0}. State the conclusion of Taylor's Theorem.

Solution. Under these hypotheses, for all $x \in[a, b]$ with $x \neq x_{0}$ there exists a ξ between x and x_{0} such that

$$
f(x)=T^{(n)}\left(x, x_{0}\right)+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

2 Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuously differentiable, that $f(0)=g(0)$, and that $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \geq 0$. Prove that $f(x) \leq g(x)$ for all $x \geq 0$.

Solution. Let $x \geq 0$. We have
$\begin{aligned} f(x)-f(0) & =\int_{0}^{x} f^{\prime}(t) d t \quad \text { by the Part I of the Fundamental Theorem (Theorem 4.2.4) } \\ & \leq \int_{0}^{x} g^{\prime}(t) d t \quad \text { by Theorem 3.3.4 } \\ & =g(x)-g(0) \quad \text { by the Part I of the Fundamental Theorem (Theorem 4.2.4). }\end{aligned}$
Since $f(0)=g(0)$, this implies that $f(x) \leq g(x)$ for all $x \geq 0$.

Duke Math 431

Practice Midterm 2

3 Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and that its derivative f^{\prime} is bounded. Prove that f is uniformly continuous on \mathbb{R}.

Solution. Since f^{\prime} is bounded, there exists some $M \in \mathbb{R}$ so that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$. Note that if $x, c \in \mathbb{R}$, then by the Mean Value Theorem there exists some d between x and c satisfying $f^{\prime}(d)=\frac{f(x)-f(c)}{x-c}$. Hence we have

$$
|f(x)-f(c)|=\left|f^{\prime}(d)\right||x-c| \leq M|x-c| .
$$

Hence given any $\epsilon>0$, choose $\delta=\frac{\epsilon}{M}$. Then note that $|x-c| \leq \delta=\frac{\epsilon}{M}$ implies

$$
|f(x)-f(c)| \leq M|x-c| \leq M \frac{\epsilon}{M}=\epsilon
$$

We have shown that f is uniformly continuous.

Duke Math 431

Practice Midterm 2

March 21, 2015
4 Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x. Prove that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)$.
Solution. Suppose $\epsilon>0$. Since $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)$ exists, there is a $\delta>0$ such that $\left|f^{\prime}(x)-\frac{f(x+h)-f(x)}{h}\right| \leq \epsilon$ if $0<|h| \leq \delta$ (see the top of page 122). Hence if $0<|h| \leq \delta$ then we have

$$
\begin{aligned}
\left|\frac{f(x+h)-f(x-h)}{2 h}-f^{\prime}(x)\right| & =\left|\left(\frac{f(x+h)-f(x)}{2 h}-\frac{f^{\prime}(x)}{2}\right)+\left(\frac{f(x)-f(x-h)}{2 h}-\frac{f^{\prime}(x)}{2}\right)\right| \\
& \leq\left|\frac{f(x+h)-f(x)}{2 h}-\frac{f^{\prime}(x)}{2}\right|+\left|\frac{f(x)-f(x-h)}{2 h}-\frac{f^{\prime}(x)}{2}\right| \\
& =\frac{1}{2}\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|+\frac{1}{2}\left|\frac{f(x)-f(x-h)}{h}-f^{\prime}(x)\right| \\
& =\frac{1}{2}\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|+\frac{1}{2}\left|\frac{f(x+(-h))-f(x)}{(-h)}-f^{\prime}(x)\right| \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

We have shown $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)$.

Remark: You could also prove this limit by considering an arbitrary sequence $h_{n} \rightarrow 0$ with $h_{n} \neq 0$.

5 Let $f:[0,3] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & 0 \leq x \leq 1 \\ 0 & 1<x<2 \\ 2 & x=2 \\ 1 & 2<x \leq 3\end{cases}
$$

Prove that f is Rieman integrable and compute $\int_{0}^{3} f(x) d x$.
Solution. Consider the partition P given by $0<\frac{1}{N}<\frac{2}{N}<\ldots<\frac{3 N-1}{N}<3$ for some $N \in \mathbb{N}$. Note

$$
\begin{aligned}
U_{P}(f)-L_{P}(f) & =\sum_{i=1}^{3 N}\left(M_{i}-m_{i}\right) \frac{1}{N} \\
& =\frac{1}{N} \sum_{i=1}^{3 N}\left(M_{i}-m_{i}\right) \\
& =\frac{1}{N}\left[\left(M_{N+1}-m_{N+1}\right)+\left(M_{2 N}-m_{2 N}\right)+\left(M_{2 N+1}-m_{2 N+1}\right)\right] \\
& \quad \text { since all other terms are zero } \\
& =\frac{1}{N}[(1-0)+(2-0)+(2-1)] \\
& =\frac{4}{N}
\end{aligned}
$$

Hence given any $\epsilon>0$, choose $N \in \mathbb{N}$ so that $N \geq \frac{4}{\epsilon}$. This gives $U_{P}(f)-L_{P}(f) \leq \epsilon$, and hence by Lemma 3.3 we have shown that f is Riemann integrable.
To compute $\int_{0}^{3} f(x) d x$, note

$$
\begin{aligned}
U_{P}(f) & =\sum_{i=1}^{3 N} M_{i} \frac{1}{N} \\
& =\frac{1}{N} \sum_{i=1}^{3 N} M_{i} \\
& =\frac{1}{N}[(1)(N+1)+(0)(N-2)+(2)(2)+(1)(N-1)] \\
& =\frac{2 N+4}{N} .
\end{aligned}
$$

Hence Corollary 3.3.2 gives

$$
\int_{0}^{3} f(x) d x=\lim _{N \rightarrow \infty} U_{P}(f)=\lim _{N \rightarrow \infty} \frac{2 N+4}{N}=2 .
$$

Duke Math 431

Practice Midterm 2
6 Let f be a continuous function on the interval [a,b]. Suppose that for every $c \in[a, b]$ and $d \in[a, b]$ we know that $\int_{c}^{d} f(x) d x=0$. Prove that $f(x)=0$ for all x.

Solution. Suppose for a contradiction that $f(y) \neq 0$ for some $y \in[a, b]$. We'll assume $f(y)>0$; the case $f(y)<0$ is analogous. Since f is continuous, there exists some $\delta>0$ such that $|x-y| \leq \delta$ implies $|f(x)-f(y)| \leq \frac{f(y)}{2}$, and hence $f(x) \geq \frac{f(y)}{2}$. Therefore we have

$$
0=\int_{y-\delta}^{y+\delta} f(x) d x \geq \int_{y-\delta}^{y+\delta} \frac{f(y)}{2} d x=\frac{f(y)}{2} \int_{y-\delta}^{y+\delta} 1 d x=\frac{f(y)}{2} 2 \delta=f(y) \delta>0 .
$$

This is a contradiction, and hence it must be the case that $f(x)=0$ for all x.

