Name: _____

- This is the Practice Midterm 2 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:"I have abided with all aspects of the honor code on this examination."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Signature:

Duke Ma	ath 431	Practice Midterm 2	March 21, 2015
1 (a)	Give an example of a function of the second	unction f and a domain D so the innovation f and a domain D so the	at $f: D \to \mathbb{R}$ is continuous

(b) Give an example of a function $f\colon [0,1]\to \mathbb{R}$ that is not Riemann integrable.

(c) Suppose f is n times continuously differentiable on [a, b] and that $f^{(n+1)}$ exists. Let $T^{(n)}(x, x_0)$ be the *n*-th Taylor polynomial of f at x_0 . State the conclusion of Taylor's Theorem.

Practice Midterm 2

March 21, 2015

2 Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuously differentiable, that f(0) = g(0), and that $f'(x) \leq g'(x)$ for all $x \geq 0$. Prove that $f(x) \leq g(x)$ for all $x \geq 0$.

Practice Midterm 2

March 21, 2015

3 Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and that its derivative f' is bounded. Prove that f is uniformly continuous on \mathbb{R} .

Duke Math 431	Practice Midterm 2	March 21, 2015
$\boxed{4} Suppose that f: \mathbb{R} \to$	\mathbb{R} is differentiable at x . Prove that $\lim_{h \to \infty} $	$rac{f(x+h)-f(x-h)}{2h} = f'(x).$

Practice Midterm 2

5 Let $f: [0,3] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & 0 \le x \le 1\\ 0 & 1 < x < 2\\ 2 & x = 2\\ 1 & 2 < x \le 3 \end{cases}$$

Prove that f is Rieman integrable and compute $\int_0^3 f(x) dx$.

Practice Midterm 2

March 21, 2015

6 Let f be a continuous function on the interval [a, b]. Suppose that for every $c \in [a, b]$ and $d \in [a, b]$ we know that $\int_c^d f(x) dx = 0$. Prove that f(x) = 0 for all x.