Name: \qquad

- This is the Practice Midterm 1 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:
"I have abided with all aspects of the honor code on this examination."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Duke Math 431

Practice Midterm 1
February 9, 2015
1 (a) Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Give the precise definition of when $\left\{a_{n}\right\}$ converges to some limit $a \in \mathbb{R}$.

Solution. Sequence $\left\{a_{n}\right\}$ converges to a if, for any $\epsilon>0$, there is some $N \in \mathbb{N}$ so that $\left|a_{n}-a\right| \leq \epsilon$ for all $n \geq N$.
(b) Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Give the precise definition of when $\left\{a_{n}\right\}$ has $d \in \mathbb{R}$ as a limit point.

Solution. Sequence $\left\{a_{n}\right\}$ has d as a limit point if, for any $\epsilon>0$ and $N \in \mathbb{N}$, there exists some $n \geq N$ so that $\left|a_{n}-d\right| \leq \epsilon$.

Duke Math 431

Practice Midterm 1

February 9, 2015
2 Show that the sequence $\left\{a_{n}\right\}$ given by $a_{n}=5+\frac{2}{\sqrt[3]{n}}$ satisfies the definition of a Cauchy sequence.
Solution. Given $\epsilon>0$, choose $N \in \mathbb{N}$ so that $N \geq \frac{4^{3}}{\epsilon^{3}}$, which is equivalent to $\frac{2}{\sqrt[3]{N}} \leq \frac{\epsilon}{2}$. Then for any $n, m \geq N$, we have

$$
\begin{array}{rlr}
\left|5+\frac{2}{\sqrt[3]{n}}-\left(5+\frac{2}{\sqrt[3]{m}}\right)\right| & =\left|\frac{2}{\sqrt[3]{n}}-\frac{2}{\sqrt[3]{m}}\right| & \\
& \leq \frac{2}{\sqrt[3]{n}}+\frac{2}{\sqrt[3]{n}} & \\
& \leq \frac{2}{\sqrt[3]{N}}+\frac{2}{\sqrt[3]{N}} & \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} &
\end{array}
$$

Hence $\left\{a_{n}\right\}$ is a Cauchy sequence.

3 Let A, B, and C be sets. Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Solution 1. Note

$$
\begin{aligned}
& x \in A \cup(B \cap C) \\
\Longleftrightarrow & x \in A \text { or } x \in(B \cap C) \\
\Longleftrightarrow & x \in A \text { or }(x \in B \text { and } x \in C) \\
\Longleftrightarrow & (x \in A \text { or } x \in B) \text { and }(x \in A \text { or } x \in C) \\
\Longleftrightarrow & x \in A \cup B \text { and } x \in A \cup C) \\
\Longleftrightarrow & x \in(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Hence $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Duke Math 431

Practice Midterm 1

February 9, 2015
4 Let $\left\{a_{n}\right\}$ be a sequence of real numbers and let S be a set of real numbers. Suppose that a_{n} is an upper bound for S for each $n \in \mathbb{N}$, and that $a_{n} \rightarrow a$. Prove that a is an upper bound for S.

Solution. Suppose for a contradiction that a is not an upper bound for S, which means there exists some $x \in S$ with $a<x$. Choose $\epsilon<x-a$. Since $a_{n} \rightarrow a$, there exists some N so that $\left|a_{n}-a\right| \leq \epsilon<x-a$ for all $n \geq N$. Pick any $n \geq N$. We have

$$
\begin{aligned}
\left|a_{n}-a\right| & <x-a, & & \text { which implies } \\
a_{n}-a & <x-a, & & \text { which implies } \\
a_{n} & <x . & &
\end{aligned}
$$

This contradicts the fact that a_{n} is an upper bound for S. Hence it must be the case that a is an upper bound for S.
(To get started, it helps to draw a picture).

Practice Midterm 1

February 9, 2015
5 Suppose that $a_{n} \rightarrow 0$ and $\left\{b_{n}\right\}$ is bounded. Prove that $a_{n} b_{n} \rightarrow 0$.

Solution. Let $\epsilon>0$ be arbitrary. Since $\left\{b_{n}\right\}$ is bounded, there exists some $M>0$ so that $\left|b_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Since $a_{n} \rightarrow 0$, there exists some $N \in \mathbb{N}$ so that $\left|a_{n}\right|=\left|a_{n}-0\right| \leq \frac{\epsilon}{M}$ for all $n \geq N$. So for any $n \geq N$, we have

$$
\begin{array}{rlr}
\left|a_{n} b_{n}-0\right| & =\left|a_{n} b_{n}\right| & \\
& \leq\left|a_{n}\right| \cdot M & \\
& \leq \frac{\epsilon}{M} \cdot M & \\
& =\epsilon . &
\end{array}
$$

Hence $a_{n} b_{n} \rightarrow 0$.

Duke Math 431

Practice Midterm 1
6 For the following true and false questions, you do not need to explain your answer at all. Just write "True" or "False".
(a) True or false: There exists a one-to-one function $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{N}$.

Solution. True. \mathbb{Q} is countable by Theorem 1.3 .5 , hence $\mathbb{Q} \times \mathbb{Q}$ is countable by Proposition 1.3.4, and hence there exists a one-to-one and onto function $f: \mathbb{Q} \times$ $\mathbb{Q} \rightarrow \mathbb{N}$ by definition.
(b) True or false: If a sequence $\left\{a_{n}\right\}$ is not bounded, then it either diverges to $+\infty$ or diverges to $-\infty$.

Solution. False. Consider the sequence given by

$$
a_{n}= \begin{cases}0 & \text { if } n \text { is odd, and } \\ n & \text { if } n \text { is even }\end{cases}
$$

This sequence is not bounded but does not diverge to either $+\infty$ or $-\infty$.
(c) True or false: If r_{1} and r_{2} are irrational numbers with $r_{1}<r_{2}$, then there exists a rational number q satisfying $r_{1}<q<r_{2}$.

Solution. True. In homework $\S 1.1 \# 11$ we proved that between any two real numbers $r_{1}<r_{2}$ there exists a rational number q satisfying $r_{1}<q<r_{2}$.
(d) True or false: If a sequence $\left\{a_{n}\right\}$ has exactly one limit point d, then sequence $\left\{a_{n}\right\}$ converges to d.

Solution. False. Consider the sequence given by

$$
a_{n}= \begin{cases}0 & \text { if } n \text { is odd, and } \\ n & \text { if } n \text { is even }\end{cases}
$$

This sequence has 0 as its only limit point, but does not converge to any limit.
(e) True or false: If function $f: S \rightarrow T$ is one-to-one, then its inverse function $f^{-1}: \operatorname{Ran}(f) \rightarrow S$ is one-to-one.

Solution. True. Suppose that $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$ for some $t_{1}, t_{2} \in T$. Let $s \in S$ satisfy $f^{-1}\left(t_{1}\right)=s=f^{-1}\left(t_{2}\right)$. This means that $f(s)=t_{1}$ and $f(s)=t_{2}$; hence it must be the case that $t_{1}=t_{2}$. So f^{-1} is one-to-one.

