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1 (a) State the precise definition of when a function ρ : M×M→ [0,∞) is a metric.

Solution. Function ρ : M×M→ [0,∞) is a metric if

(a) For all x, y ∈M we have ρ(x, y) ≥ 0, and ρ(x, y) = 0 if and only if x = y.

(b) For all x, y ∈M we have ρ(x, y) = ρ(y, x).

(c) For all x, y, z ∈M we have ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

(b) Let (M1, ρ1) and (M2, ρ2) be metric spaces. Prove that (M1×M2, ρ) is a metric
space, where ρ : (M1 ×M2)× (M1 ×M2)→ [0,∞) is defined by the formula

ρ
(
(x1, x2), (y1, y2)

)
= ρ1(x1, y1) + ρ2(x2, y2).

Solution. For (a), note that

ρ
(
(x1, x2), (y1, y2)

)
= ρ1(x1, y1) + ρ2(x2, y2) ≥ 0,

and that

ρ
(
(x1, x2), (y1, y2)

)
= 0

⇐⇒ ρ1(x1, y1) = 0 and ρ2(x2, y2) = 0

⇐⇒ x1 = y1 and x2 = y2

⇐⇒ (x1, x2) = (y1, y2).

For (b), note that

ρ
(
(x1, x2), (y1, y2)

)
= ρ1(x1, y1)+ρ2(x2, y2) = ρ(y1, x1)+ρ(y2, x2) = ρ

(
(y1, y2), (x1, x2)

)
.

To see the triangle inequality (c), note

ρ
(
(x1, x2), (z1, z2)

)
= ρ1(x1, z1) + ρ2(x2, z2)

≤ ρ1(x1, y1) + ρ1(y1, z1) + ρ2(x2, y2) + ρ2(y2, z2)

= ρ1(x1, y1) + ρ2(x2, y2) + ρ1(y1, z1) + ρ2(y2, z2)

= ρ
(
(x1, x2), (y1, y2)

)
+ ρ
(
(y1, y2), (z1, z2)

)
Hence (M1 ×M2, ρ) is a metric space.
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2 Let p and q be integers, q 6= 0. Suppose that f(x) = xp/q is differentiable for x > 0.

Prove that d
dx
xp/q = p

q
xp/q−1.

Hint: differentiate f(x)q = xp.

Solution. We use the chain rule (Theorem 4.1.3) to differentiate f(x)q = xp, and
we obtain

pxp−1 =
d

dx
xp by §4.1 Example 3

=
d

dx
f(x)q

= q(f(x))q−1f ′(x) by the chain rule (Theorem 4.1.3)

= qx
p(q−1)

q f ′(x).

Solving for f ′(x) gives

f ′(x) =
p

q
xp−1−

p(q−1)
q =

p

q
x

pq−q−pq+p
q =

p

q
x

p
q
−1.
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3 Let fn, f , and g be functions defined on [a, b]. Suppose that g is continuous.

(a) Prove that if fn → f pointwise, then gfn → gf pointwise.

Solution. Note for any x ∈ [a, b], we have

lim
n→∞

(gfn)(x) = lim
n→∞

g(x)fn(x)

= g(x) lim
n→∞

fn(x) since g(x) is a constant

= g(x)f(x) since fn → f pointwise

= (gf)(x).

Hence gfn → gf pointwise.

(b) Prove that if fn → f uniformly, then gfn → gf uniformly.

Solution. Since g : [a, b] → R is continuous, Theorem 3.2.1 says there is some
M > 0 with |g(x)| ≤ M for all x ∈ [a, b]. Let ε > 0 be arbitrary. Since fn → f
uniformly, there is some N ∈ N so that n ≥ N implies |fn(x)− f(x)| ≤ ε

M
for all

x ∈ [a, b]. Then note n ≥ N implies

|(gfn)(x)− (gf)(x)| = |g(x)fn(x)− g(x)f(x)|
= |g(x)| · |fn(x)− f(x)|

≤M · ε
M

= ε for all x ∈ [a, b].

Hence gfn → gf uniformly on [a, b].
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4 Let {an} and {bn} be sequences of real numbers such that {an} converges to a limit
a ∈ R and {bn} is bounded. Prove that

lim sup
n→∞

(an + bn) = lim sup
n→∞

an + lim sup
n→∞

bn.

Solution. Let a = limn→∞ an = lim sup an and let b = lim sup bn. We will show
that a+ b satisfies the properties of Theorem 6.1.1(a) for sequence an + bn, and hence
the uniqueness part of this theorem will guarantee that lim sup(an + bn) = a+ b.

Let ε > 0. Since an → a we know there is some N1 ∈ N so that for all n ≥ N1 we
have an ≤ a+ ε

2
, and since b = lim sup bn we know there is some N2 ∈ N so that for all

n ≥ N2 we have bn ≤ b+ ε
2
. Hence for all n ≥ max{N1, N2} we have

an + bn ≤
(
a+

ε

2

)
+
(
b+

ε

2

)
= a+ b+ ε.

Let ε > 0 and N ∈ N . Since an → a we know there is some N1 ∈ N so that for all
n ≥ N1 we have an ≥ a − ε

2
, and since b = lim sup bn we know that there is some

n ≥ max{N,N1} so that bn ≥ b− ε
2
. Hence we have found some n ≥ N so that

an + bn ≥
(
a− ε

2

)
+
(
b− ε

2

)
= a+ b− ε.

By Theorem 6.1.1(a) we have

lim sup(an + bn) = a+ b = lim sup an + lim sup bn.
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5 Let f : (0,∞)→ R be defined by f(x) = 1
x2

.

(a) Prove that f is continuous on (0,∞).

Solution. Since x2 is a polynomial, we know (by page 74 of the book) that x2 is
continuous on (0,∞). Theorem 3.1.1(d) says the ratio of two continuous func-
tions is continuous wherever the denominator is not zero, and hence f(x) = 1

x2
is

continuous on (0,∞).

(b) Prove that f is not uniformly continuous on (0,∞).

Solution. Let ε = 1. Given any δ > 0, choose n ∈ N so that n ≥ 1
δ
, which

gives 1
n
≤ δ. Let x = 1

n
and let c = 1

n+1
. Note that we have

|x− c| =
∣∣∣ 1
n
− 1

n+ 1

∣∣∣ =
1

n
− 1

n+ 1
<

1

n
≤ δ

but

|f(x)− f(c)| =
∣∣∣ 1

1/n2
− 1

1/(n+ 1)2

∣∣∣ = |n2 − (n+ 1)2| = 2n+ 1 > ε.

Hence we’ve shown that f is not uniformly continuous on (0,∞).
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6 Consider the series
∑∞

j=1 2(−1)j(1
2
)j.

(a) Use the comparison test to determine whether this series converges or diverges.

Solution. Note
0 ≤ 2(−1)j(1

2
)j ≤ 2(1

2
)j.

The series
∑

2(1
2
)j converges because it is a constant multiple of a geometric

series with ratio 1
2
< 1. Hence the Comparison Test (Theorem 6.2.2) implies that∑

2(−1)j(1
2
)j converges.

(b) Does the ratio test determine whether this series converges or diverges, or is it
inconclusive?

Solution. Note
|aj+1|
|aj|

=

{
2·(1/2)
1/2

= 2 if j is odd
(1/2)·(1/2)

2
= 1

8
if j is even.

Since lim sup
|aj+1|
|aj | = 2 ≥ 1 and lim inf

|aj+1|
|aj | = 1

8
≤ 1, the Ratio Test (Theorem

6.2.4) is inconclusive.

(c) Does the root test determine whether this series converges or diverges, or is it
inconclusive?

Solution. We claim that |aj|1/j = (2(−1)j)1/j · 1
2
→ 1

2
as j → ∞. This is be-

cause (1

2

)1/j
≤ (2(−1)j)1/j ≤ 21/j,

and so the Squeeze Theorem implies that (2(−1)j)1/j → 1 since we have both
(1
2
)1/j → 1 and 21/j → 1 as j →∞.

Since lim sup |aj|1/j = 1
2
< 1, the Root Test (Theorem 6.2.3) says that

∑
2(−1)j(1

2
)j

converges.
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7 Let n ∈ N, and let S1, S2, . . . , Sn be countable sets. Recall

S1 × S2 × . . .× Sn = {(s1, s2, . . . , sn) | si ∈ Si for all 1 ≤ i ≤ n}.

(a) Construct a one-to-one function h : S1 × S2 × . . .× Sn → N.

Solution. We mimic the proof of Proposition 1.3.4. Let 1 ≤ i ≤ n. Since
Si is countable, there exists a one-to-one and onto function fi : Si → N. Let
p1, p2, . . . , pn be the first n prime numbers. We define function

h : S1 × S2 × . . .× Sn → N

by setting
h(s1, s2, . . . , sn) = p

f1(s1)
1 · pf2(s2)2 · . . . · pfn(sn)n .

The fact that h is one-to-one follows from The Fundamental Theorem of Arith-
metic (Theorem 1.3.3), which says that prime factorizations are unique.

(b) Prove that S1 × S2 × . . .× Sn is countable.

Solution. In (a) we constructed a one-to-one function h : S1× S2× . . .× Sn → N.
This shows that S1× S2× . . .× Sn has the cardinality of an infinite subset of the
countable set N. Since any any infinite subset of a countable set is countable (by
Proposition 1.3.2), this shows that S1 × S2 × . . .× Sn is countable.
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8 Suppose ρ and σ are two metrics on a set M. Suppose there are positive constants c1
and c2 such that for all x, y ∈M, we have

ρ(x, y) ≤ c1σ(x, y) and σ(x, y) ≤ c2ρ(x, y).

Prove that metric space (M, ρ) is complete if and only if (M, σ) is complete.

Solution. We will show that if (M, ρ) is complete, then so is (M, σ). The reverse
direction is symmetric.

Suppose {xn} is a Cauchy sequence in (M, σ). We first show that {xn} is also a Cauchy
sequence in (M, ρ). To see this, given ε > 0 note there is an N ∈ N so that n,m ≥ N
implies σ(xn, xm) ≤ ε

c1
, and hence n,m ≥ N implies

ρ(xn, xm) ≤ c1σ(xn, xm) ≤ c1
ε

c1
= ε.

Since {xn} is a Cauchy sequence in the complete metric space (M, ρ), there is some
x ∈ M so that ρ(xn, x)→ 0 as n→∞. Hence given ε > 0, there is an N ∈ N so that
n ≥ N implies ρ(xn, x) ≤ ε

c2
, and hence n ≥ N implies

σ(xn, x) ≤ c2ρ(xn, x) ≤ c2
ε

c2
= ε.

We have shown σ(xn, x)→ 0 as n→∞, meaning that {xn} converges to x in (M, σ).
So (M, σ) is complete.
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9 Let {an} be a bounded sequence, and let L ∈ R. Suppose that every convergent sub-
sequence of {an} has limit L. Prove that limn→∞ an = L.

Solution 1. Suppose for a contradiction that {an} does not have limit L. Hence there
exists an ε > 0 such that for any N ∈ N, there exists some n > N with |an − L| > ε.
This allows us to define n1 < n2 < n3 . . . such that |ank

− L| > ε for all k ∈ N. Since
{ank
} is a bounded sequence, by Bolzano-Weierstrass it has a convergent subsequence,

which clearly cannot converge to L. This is a contradiction, and so it must be that
limn→∞ an = L.

Solution 2. By Proposition 2.6.1 there is a subsequence converging to any limit point
of {an}, and it follows from the hypothesis that L is the only limit point of {an}. Let
P be the set of all limit points of {an}; in this case we have P = {L}. By homework
6.1 #9 we know that lim sup an = supP = L, and lim inf an = inf P = L. Since the
lim sup and lim inf are equal, Corollary 6.1.2 says that limn→∞ an = L.
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10 Suppose that f : [a, b]→ R is continuous. Suppose c ∈ (a, b) is a point where f achieves
its maximum. Prove that if f is differentiable at c, then f ′(c) = 0.
Remark: I am not asking you to say “this is a theorem from the book” (in fact Theorem
4.2.1); I’m asking you to prove this theorem.

Solution. Suppose for a contradiction that f ′(c) 6= 0. We will do the case when

f ′(c) > 0; the case when f ′(c) < 0 is analogous. Since limh→0
f(c+h)−f(c)

h
= f ′(c), there

exists a δ > 0 so that

f(c+ h)− f(c)

h
≥ f ′(c)

2
if 0 < |h| ≤ δ.

Thus for 0 < h ≤ δ we have

f(c+ h) ≥ f(c) + h
f ′(c)

2
> f(c).

This contradicts the hypothesis that f achieves its maximum at c. Hence it must be
the case that f ′(c) = 0.
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11 For the following true and false questions, you do not need to explain your answer at
all. Just write “True” or “False”.

(a) True or false: Every monotone increasing sequence either converges to a finite
limit or diverges to infinity.

Solution. True. Indeed, if the monotone increasing sequence is bounded then
Theorem 2.4.3 says it converges, and if it is not bounded then page 50 explains
why it diverges to infinity.

(b) True or false: If a bounded sequence {an} has exactly one limit point d, then
sequence {an} converges to d.

Solution. True. The assumption of boundedness is crucial here. Note that 6.1
#9 says that lim sup an = d = lim inf an, and hence limn→∞ an = d by Corollary
6.1.2.

(c) Let fn : [0, 1] → R be a sequence of continuously differentiable functions and let
f : [0, 1]→ R be a function. If fn → f uniformly then f is continuously differen-
tiable.

Solution. False. For a counterexample, draw a picture of continuously differ-
entiable functions that converge uniformly to |x − 1

2
|, which is not differentiable

at x = 1
2
.

(d) True or false: The function f : [0, 1]→ R given by

f(x) =

{
1 if x = 1

n
for some n ∈ N

0 otherwise

is Riemann integrable.

Solution. True. Here’s a sketch of a proof. We’ll use Lemma 3 in §3.3. Let
ε > 0; we must bound UP (f)− LP (f) by ε. Include [0, ε

2
] as a subinterval in our

partition. If N is such that 1
N+1

≤ ε
2
, then f has only N discontinuities in the

interval [ ε
2
, 1], located at 1

1
, 1

2
, . . . , 1

N
. Place a subinterval of width at most ε

2N

around each such discontinuity. Then for this partition we have

UP (f)− LP (f) ≤ 1 · ε
2

+
N∑
i=1

1 · ε

2N
=
ε

2
+
ε

2
= ε.
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(e) True or false: For f, g ∈ C[0, 1], let ρ1(f, g) = ‖f − g‖1. Let {fn} be a sequence
of functions in C[0, 1]. If {fn} converges in the metric space (C[0, 1], ρ1) to some

function f ∈ C[0, 1], then
∫ 1

0
fn(x) dx→

∫ 1

0
f(x) dx as n→∞.

Solution. True. Note that fn converging to f in (C[0, 1], ρ1) means

ρ1(fn, f) =

∫ 1

0

|fn(x)− f(x)| dx→ 0 as n→∞,

which implies
∫ 1

0
(fn(x)− f(x)) dx→ 0 as n→∞, which implies

∫ 1

0
fn(x) dx→∫ 1

0
f(x) dx as n→∞.


