Name: \qquad

- This is Midterm 2 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:
"I have abided with all aspects of the honor code on this examination."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Duke Math 431

Midterm 2
1 (a) Give the precise definition of when a function $f: \operatorname{Dom}(f) \rightarrow \mathbb{R}$ is uniformly continuous. (4 points)

Solution. Function $f: \operatorname{Dom}(f) \rightarrow \mathbb{R}$ is uniformly continuous if for each $\epsilon>0$ there is a $\delta>0$ so that for all $x, c \in \operatorname{Dom}(f)$, we have that $|x-c| \leq \delta$ implies $|f(x)-f(c)| \leq \epsilon$.
(b) Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}. (6 points)

Solution. This is analogous to homework problem 3.2 \#9. Let $\epsilon=1$. Given any $\delta>0$, choose $n \in \mathbb{N}$ so that $n \geq \frac{1}{\delta}$, which gives $\frac{1}{n} \leq \delta$. Consider $x=n+\frac{1}{n}$ and $c=n$. Note that $|x-c|=\left|n+\frac{1}{n}-n\right|=\frac{1}{n} \leq \delta$ while

$$
\begin{aligned}
|f(x)-f(c)| & =\left|\left(n+\frac{1}{n}\right)^{2}-n^{2}\right| \\
& =\left|n^{2}+2+\frac{1}{n^{2}}-n^{2}\right| \\
& =2+\frac{1}{n^{2}} \\
& >\epsilon .
\end{aligned}
$$

Hence f is not uniformly continuous on \mathbb{R}.

Duke Math 431

Midterm 2
March 27, 2015
2 (a) Compute the fourth-order Taylor polynomial $T^{(4)}(x, 0)$ for $f(x)=\cos x$ about $x=0$. (4 points)

Solution. We compute

$$
f^{\prime}(x)=-\sin x, \quad f^{\prime \prime}(x)=-\cos x, \quad f^{\prime \prime \prime}(x)=\sin x, \quad f^{(4)}(x)=\cos x
$$

Hence

$$
f(0)=1, \quad f^{\prime}(0)=-0, \quad f^{\prime \prime}(0)=-1, \quad f^{\prime \prime \prime}(0)=0, \quad f^{(4)}(0)=1
$$

This gives

$$
T^{(4)}(x, 0)=1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}
$$

(b) Use Taylor's Theorem to prove $\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{1}{2} x^{2}}{x^{4}}$ exists. (6 points)

Solution. This is analogous to homework problem 4.3\#9. We compute $f^{(5)}(x)=$ $-\sin x$. Given $\epsilon>0$, choose $\delta=(5!) \epsilon$. For $0<|x|<\delta=(5!) \epsilon$, we have
$\left|\frac{\cos x-1+\frac{1}{2} x^{2}}{x^{4}}-\frac{1}{4!}\right|=\left|\frac{\left(1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\frac{\sin \xi}{5!} x^{5}\right)-1+\frac{1}{2} x^{2}}{x^{4}}-\frac{1}{4!}\right|$
for some ξ between 0 and x by Taylor's Theorem (Theorem 4.3.1)
$=\left|\frac{1}{4!}-\frac{\sin (\xi) x}{5!}-\frac{1}{4!}\right|$
$=\left|\frac{\sin (\xi) x}{5!}\right|$
$\leq\left|\frac{x}{5!}\right| \quad$ since $|\sin (\xi)| \leq 1$
$\leq \epsilon$ by choice of δ.
Hence $\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{1}{2} x^{2}}{x^{4}}=\frac{1}{4}$.

Duke Math 431

Midterm 2
March 27, 2015
3 Suppose $f:[0,1) \rightarrow \mathbb{R}$ is a continuously differentiable function that is not bounded, and for simplicity assume $f(0)=0$. Prove that $f^{\prime}:[0,1) \rightarrow \mathbb{R}$ is not bounded.

Solution. Suppose for a contradiction that f^{\prime} were bounded, meaning that there is some $M \in \mathbb{R}$ with $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[0,1)$. Then for any $x \in[0,1)$, Part I of the Fundamental Theorem of Caluculus (Theorem 4.2.4) gives

$$
\begin{aligned}
|f(x)| & =|f(x)-f(0)| & & \text { since } f(0)=0 \\
& =\left|\int_{0}^{x} f^{\prime}(t) d t\right| & & \\
& \leq \int_{0}^{x}\left|f^{\prime}(t)\right| d t & & \text { by Theorem 3.3.5 } \\
& \leq \int_{0}^{x} M d t & & \\
& =M x & & \text { since } x \in[0,1) .
\end{aligned}
$$

This shows that f is bounded, a contradiction. Hence it must be the case that f^{\prime} is not bounded.

Duke Math 431

4 Define $f:[0,3] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } 1<x \leq 2 \\ 2 & \text { if } 2<x \leq 3\end{cases}
$$

Prove that f is Riemann integrable.
Solution. Consider the partition P given by $0<\frac{1}{N}<\frac{2}{N}<\ldots<\frac{3 N-1}{N}<3 N$ with $N \in \mathbb{N}$. Note

$$
\begin{aligned}
U_{P}(f)-L_{P}(f) & =\sum_{i=1}^{3 N}\left(M_{i}-m_{i}\right) \frac{1}{N} \\
& =\frac{1}{N} \sum_{i=1}^{3 N}\left(M_{i}-m_{i}\right) \\
& =\frac{1}{N}\left(\left(\sum_{i=1}^{N} \frac{1}{N}\right)+1\right) \text { since we have } M_{i}-m_{i}=\frac{1}{N} \text { for } 1 \leq i \leq N \\
& \quad \text { since } M_{2 n+1}-m_{2 n+1}=1, \text { and since all other terms are zero } \\
& =\frac{1}{N}(1+1) \\
& =\frac{2}{N}
\end{aligned}
$$

Given any $\epsilon>0$, choose $N \in \mathbb{N}$ with $\mathbb{N} \geq \frac{2}{\epsilon}$, which gives $U_{P}(f)-L_{P}(f) \leq \epsilon$. Hence by Lemma 3 in $\S 3$ we have shown that f is Riemann integrable.

Duke Math 431
Midterm 2
March 27, 2015
5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ via

$$
f(x)= \begin{cases}x^{2} \cos (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) For $x \neq 0$, compute $f^{\prime}(x)$.

Solution. All three parts of this problem are analogous to $4.1 \# 12$.

$$
\begin{aligned}
f^{\prime}(x) & =2 x \cos (1 / x)+x^{2}(-\sin (1 / x))\left(\frac{-1}{x^{2}}\right) \\
& =2 x \cos (1 / x)+\sin (1 / x) .
\end{aligned}
$$

(b) Compute $f^{\prime}(0)$.

Solution.

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2} \cos (1 / h)}{h} \\
& =\lim _{h \rightarrow 0} h \cos (1 / h)
\end{aligned}
$$

$$
=0 \quad \text { by the Squeeze Theorem, or since }|\cos (1 / h)| \leq 1
$$

(c) Prove f^{\prime} is not continuous at $x=0$.

Solution. Let $x_{n}=\frac{1}{\pi / 2+2 \pi n}$. Note that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ with $x_{n} \neq 0$. We have

$$
\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=\lim _{n \rightarrow \infty} 2 x_{n} \cos \left(1 / x_{n}\right)+\sin \left(1 / x_{n}\right)=\lim _{n \rightarrow \infty} 1=1 \neq 0=f^{\prime}(0)
$$

This shows that f^{\prime} is not continuous at $x=0$.

Duke Math 431

Midterm 2
March 27, 2015
6 State Rolle's Theorem (along with its hypotheses) for a function $g:[a, b] \rightarrow \mathbb{R}$.
State the Mean Value Theorem (along with its hypotheses) for a function $f:[a, b] \rightarrow \mathbb{R}$. Use Rolle's Theorem to prove the Mean Value Theorem.

Solution.
Rolle's Theorem: If $g:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable and $g(a)=0=$ $g(b)$, then there is a point c satisfying $a<c<b$ such that $f^{\prime}(c)=0$.

Mean Value Theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable, then there is a point c satisfying $a<c<b$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

To prove the Mean Value theorem, define the function

$$
g(x)=f(x)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right) .
$$

Note that $g(a)=0=g(b)$. Hence we apply Rolle's Theorem to g to get a point c with $a<c<b$ satisfying $g^{\prime}(c)=0$. Taking the derivative of $g(x)$ at c, this gives

$$
0=g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

This means $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ as desired.

