Midterm 2

Name: _____

- This is Midterm 2 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:

"I have abided with all aspects of the honor code on this examination."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Signature:

1

(a) Give the precise definition of when a function $f: Dom(f) \to \mathbb{R}$ is uniformly continuous. (4 points)

(b) Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . (6 points)

Midterm 2

March 27, 2015

2 (a) Compute the fourth-order Taylor polynomial $T^{(4)}(x,0)$ for $f(x) = \cos x$ about x = 0. (4 points)

(b) Use Taylor's Theorem to prove $\lim_{x\to 0} \frac{\cos x - 1 + \frac{1}{2}x^2}{x^4}$ exists. (6 points)

Midterm 2

3 Suppose $f: [0,1) \to \mathbb{R}$ is a continuously differentiable function that is not bounded, and for simplicity assume f(0) = 0. Prove that $f': [0,1) \to \mathbb{R}$ is not bounded.

4 Define $f: [0,3] \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ 1 & \text{if } 1 < x \le 2\\ 2 & \text{if } 2 < x \le 3. \end{cases}$$

Prove that f is Riemann integrable.

Midterm 2

5 Let $f \colon \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} x^2 \cos(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

(a) For $x \neq 0$, compute f'(x).

(b) Compute f'(0).

(c) Prove f' is not continuous at x = 0.

Midterm 2

March 27, 2015

6 State Rolle's Theorem (along with its hypotheses) for a function $g: [a, b] \to \mathbb{R}$. State the Mean Value Theorem (along with its hypotheses) for a function $f: [a, b] \to \mathbb{R}$. Use Rolle's Theorem to prove the Mean Value Theorem.