Name: \qquad

- This is Midterm 1 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:
"I have abided with all aspects of the honor code on this examination."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Duke Math 431

Midterm 1

February 16, 2015
1 (a) Give a precise definition of when a sequence $\left\{a_{n}\right\}$ of real numbers is a Cauchy sequence.

Solution. Sequence $\left\{a_{n}\right\}$ is a Cauchy sequence if, for any $\epsilon>0$, there exists some $N \in \mathbb{N}$ so that $\left|a_{n}-a_{m}\right| \leq \epsilon$ if $n, m \geq N$.
(b) Give a precise definition of when a function $f: S \rightarrow T$ is one-to-one (also called injective).

Solution 1. Function $f: S \rightarrow T$ is one-to-one if for each $t \in \operatorname{Ran}(f)$ there is only one $s \in S$ so that $f(s)=t$.

Solution 2. Function $f: S \rightarrow T$ is one-to-one if for any $s_{1}, s_{2} \in S$, the equality $f\left(s_{1}\right)=f\left(s_{2}\right)$ implies $s_{1}=s_{2}$.

Duke Math 431

Midterm 1

February 16, 2015
2 Prove that the sequence $\left\{a_{n}\right\}$ given by $a_{n}=\sqrt{2+\frac{1}{n}}$ converges to a limit.
Solution. Given $\epsilon>0$, choose $N \in \mathbb{N}$ so that $N \geq \frac{1}{\epsilon}$. Then note $n \geq N$ implies

$$
\begin{aligned}
\left|a_{n}-\sqrt{2}\right| & =\left|\sqrt{2+\frac{1}{n}}-\sqrt{2}\right| \\
& =\left|\frac{\left(\sqrt{2+\frac{1}{n}}-\sqrt{2}\right)\left(\sqrt{2+\frac{1}{n}}+\sqrt{2}\right)}{\sqrt{2+\frac{1}{n}}+\sqrt{2}}\right| \\
& =\left|\frac{2+\frac{1}{n}-2}{\sqrt{2+\frac{1}{n}}+\sqrt{2}}\right| \\
& =\frac{\frac{1}{n}}{\sqrt{2+\frac{1}{n}}+\sqrt{2}} \\
& \leq \frac{1}{n} \\
& \leq \frac{1}{N}
\end{aligned}
$$

$$
\leq \epsilon \quad \text { by choice of } N .
$$

Hence we have shown that $\left\{a_{n}\right\}$ converges to the limit $\sqrt{2}$.

Duke Math 431

Midterm 1

February 16, 2015
3 (a) Prove that if q and r are rational numbers, then their product $q r$ is rational. (You may use without comment that the product of two integers is an integer.)

Solution. Let $q=\frac{a}{b}$ and $r=\frac{c}{d}$ for integers $a, b \neq 0, c$, and $d \neq 0$. Then $q r=\frac{a}{b} \cdot \frac{c}{d}=\frac{a b}{c d}$ is rational.
(b) Prove that if $q \neq 0$ is rational and r is irrational, then their product $q r$ is irrational.

Solution. Suppose for a contradiction that $q r$ were rational, hence $q r=\frac{a}{b}$ for integers a and $b \neq 0$. Since $q \neq 0$ is rational we can let $q=\frac{c}{d}$ for integers $c \neq 0$ and $d \neq 0$. Then we'd have $r=(q r) / q=\frac{a}{b} / \frac{c}{d}=\frac{a d}{b c}$ rational, a contradiction. Hence $q r$ must be irrational.

Duke Math 431

Midterm 1

February 16, 2015
4 Prove that if $\left\{a_{n}\right\}$ converges to a limit $a \in \mathbb{R}$, then $\left\{a_{n}\right\}$ is a Cauchy sequence. (I am not asking you to say "This is a proposition from our book or from class"; I am asking you to give a proof of this proposition from the definitions.)

Solution. Let $\epsilon>0$ be given. Since $a_{n} \rightarrow a$, there exists an integer N so that $n \geq N$ implies $\left|a_{n}-a\right| \leq \frac{\epsilon}{2}$. Therefore if $n, m \geq N$, then we have

$$
\begin{aligned}
\left|a_{n}-a_{m}\right| & =\left|\left(a_{n}-a\right)+\left(a-a_{m}\right)\right| \\
& \leq\left|a_{n}-a\right|+\left|a-a_{m}\right| \quad \text { by the triangle inequality } \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Hence $\left\{a_{n}\right\}$ is a Cauchy sequence.

Duke Math 431

Midterm 1

February 16, 2015
5 (a) (3 points). Give a precise definition of when a number b is an upper bound for a set S of real numbers.

Solution. Number b is an upper bound for set S if $x \leq b$ for all $x \in S$.
(b) (7 points). Let S be a set of real numbers and let $\left\{a_{n}\right\}$ be a convergent sequence with $a_{n} \rightarrow a$. Prove that if a_{n} is an upper bound for S for each n, then a is an upper bound for S.

Solution. Suppose for a contradiction that a is not an upper bound for S. Then there is some element $x \in S$ with $x>a$. Choose $\epsilon>0$ with $\epsilon<x-a$. Since $a_{n} \rightarrow a$, there exists some integer N so that $\left|a_{n}-a\right| \leq \epsilon<x-a$ for all $n \geq N$. Hence

$$
a_{N}-a \leq\left|a_{N}-a\right|<x-a
$$

implies $a_{N}<x$. This contradicts the fact that a_{N} is an upper bound for S. Hence it must be the case that a is an upper bound for S.

Duke Math 431

Midterm 1
February 16, 2015
6 For the following true and false questions, you do not need to explain your answer at all. Just write "True" or "False".
(a) True or false: There exists a function $f: \mathbb{R} \rightarrow \mathbb{Q}$ from the set of real numbers to the set of rational numbers which is onto (i.e. surjective).

Solution. True. Consider the function $f: \mathbb{R} \rightarrow \mathbb{Q}$ defined by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

(b) True or false: If a sequence $\left\{a_{n}\right\}$ is bounded, then $\left\{a_{n}\right\}$ has a limit point.

Solution. True. Sine $\left\{a_{n}\right\}$ is bounded it has a convergent subsequence by the Bolzano-Weierstrass Theorem (Theorem 2.6.2), and hence it has a limit point by Proposition 2.6.1 (which says that d is a limit point of $\left\{a_{n}\right\}$ if and only if there exists a subsequence $\left\{a_{n_{k}}\right\}$ converging to d).
(c) True or false: If $\left\{a_{n}\right\}$ is a sequence of rational numbers and $a_{n} \rightarrow a$, then a is a rational number.

Solution. False. Consider the sequence of rational numbers given on page 47 of the book which converges to the irrational number π.
(d) True or false: If S is a bounded set and $\sup S$ is its least upper bound, then $\sup S \in S$.

Solution. False. Consider $S=[0,1$, which has $\sup S=1$ but $1 \notin S$.
(e) True or false: If some subsequence $\left\{a_{n_{k}}\right\}$ of a sequence $\left\{a_{n}\right\}$ has $d \in \mathbb{R}$ as a limit point, then sequence $\left\{a_{n}\right\}$ also has d as a limit point.

Solution. True. Since $\left\{a_{n_{k}}\right\}$ has d as a limit point, that means that for any $\epsilon>0$ and $K \in \mathbb{N}$ there exists a $k \geq K$ so that $\left|a_{n_{k}}-d\right| \leq \epsilon$. It is then not hard to see that for any $\epsilon>0$ and $N \in \mathbb{N}$ there exists an $n \geq N$ so that $\left|a_{n}-d\right| \leq \epsilon$. (Indeed, just pick K so that $n_{K} \geq N$.) Hence $\left\{a_{n}\right\}$ has d as a limit point.

