Midterm 1

Name: _____

- This is Midterm 1 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:

"I have abided with all aspects of the honor code on this examination."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Signature:

1

Midterm 1

February 16, 2015

(a) Give a precise definition of when a sequence $\{a_n\}$ of real numbers is a Cauchy sequence.

(b) Give a precise definition of when a function $f: S \to T$ is one-to-one (also called injective).

Duke Math 431	Midterm 1	February 16, 2015
$\fbox{2} Prove that the sequence {}$	a_n } given by $a_n = \sqrt{2 + \frac{1}{n}}$ co	onverges to a limit.

Midterm 1

February 16, 2015

3 (a) Prove that if q and r are rational numbers, then their product qr is rational. (You may use without comment that the product of two integers is an integer.)

(b) Prove that if $q \neq 0$ is rational and r is irrational, then their product qr is irrational.

Midterm 1

4 Prove that if $\{a_n\}$ converges to a limit $a \in \mathbb{R}$, then $\{a_n\}$ is a Cauchy sequence. (I am not asking you to say "This is a proposition from our book or from class"; I am asking you to give a proof of this proposition from the definitions.)

Midterm 1

February 16, 2015

5 (a) (3 points). Give a precise definition of when a number b is an upper bound for a set S of real numbers.

(b) (7 points). Let S be a set of real numbers and let $\{a_n\}$ be a convergent sequence with $a_n \to a$. Prove that if a_n is an upper bound for S for each n, then a is an upper bound for S.

Duke Math 431Midterm 1February 16, 2015

- <u>6</u> For the following true and false questions, you do not need to explain your answer at all. Just write "True" or "False".
 - (a) True or false: There exists a function $f : \mathbb{R} \to \mathbb{Q}$ from the set of real numbers to the set of rational numbers which is onto (i.e. surjective).

(b) True or false: If a sequence $\{a_n\}$ is bounded, then $\{a_n\}$ has a limit point.

(c) True or false: If $\{a_n\}$ is a sequence of rational numbers and $a_n \to a$, then a is a rational number.

(d) True or false: If S is a bounded set and $\sup S$ is its least upper bound, then $\sup S \in S$.

(e) True or false: If some subsequence $\{a_{n_k}\}$ of a sequence $\{a_n\}$ has $d \in \mathbb{R}$ as a limit point, then sequence $\{a_n\}$ also has d as a limit point.