Name: \qquad

- This is Midterm 1 for Duke Math 431. Partial credit is available. No notes, books, calculators, or other electronic devices are permitted.
- Write proofs that consist of complete sentences, make your logic clear, and justify all conclusions that you make.
- Please sign below to indicate you accept the following statement:
"I have abided with all aspects of the honor code on this examination."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

Duke Math 431

Midterm 1

February 16, 2015
1 (a) Give a precise definition of when a sequence $\left\{a_{n}\right\}$ of real numbers is a Cauchy sequence.
(b) Give a precise definition of when a function $f: S \rightarrow T$ is one-to-one (also called injective).

2 Prove that the sequence $\left\{a_{n}\right\}$ given by $a_{n}=\sqrt{2+\frac{1}{n}}$ converges to a limit.

Duke Math 431

Midterm 1

February 16, 2015
3 (a) Prove that if q and r are rational numbers, then their product $q r$ is rational. (You may use without comment that the product of two integers is an integer.)
(b) Prove that if $q \neq 0$ is rational and r is irrational, then their product $q r$ is irrational.

Duke Math 431

Midterm 1

February 16, 2015
4 Prove that if $\left\{a_{n}\right\}$ converges to a limit $a \in \mathbb{R}$, then $\left\{a_{n}\right\}$ is a Cauchy sequence. (I am not asking you to say"This is a proposition from our book or from class"; I am asking you to give a proof of this proposition from the definitions.)

Duke Math 431

Midterm 1

February 16, 2015
5 (a) (3 points). Give a precise definition of when a number b is an upper bound for a set S of real numbers.
(b) (7 points). Let S be a set of real numbers and let $\left\{a_{n}\right\}$ be a convergent sequence with $a_{n} \rightarrow a$. Prove that if a_{n} is an upper bound for S for each n, then a is an upper bound for S.

Duke Math 431

Midterm 1

February 16, 2015
6 For the following true and false questions, you do not need to explain your answer at all. Just write "True" or "False".
(a) True or false: There exists a function $f: \mathbb{R} \rightarrow \mathbb{Q}$ from the set of real numbers to the set of rational numbers which is onto (i.e. surjective).
(b) True or false: If a sequence $\left\{a_{n}\right\}$ is bounded, then $\left\{a_{n}\right\}$ has a limit point.
(c) True or false: If $\left\{a_{n}\right\}$ is a sequence of rational numbers and $a_{n} \rightarrow a$, then a is a rational number.
(d) True or false: If S is a bounded set and $\sup S$ is its least upper bound, then $\sup S \in S$.
(e) True or false: If some subsequence $\left\{a_{n_{k}}\right\}$ of a sequence $\left\{a_{n}\right\}$ has $d \in \mathbb{R}$ as a limit point, then sequence $\left\{a_{n}\right\}$ also has d as a limit point.

