Duke Math 431
Spring 2015

Homework 2

Due Friday, January 23

Reading. Sections 1.4 and 2.1.

Problems.

Section 1.3: \#1, 3(c).
For 3(c) you may assume the two sets are disjoint, i.e. they have no elements in common.
Section 1.4: \#10, 11(c).
For $10(c)$, let $f^{2}(x)=f(x) f(x)$.
For 11(c), I suggest finding a rational number q with $c-\sqrt{2}<q<d-\sqrt{2}$ and then using Extra Problem 1 below.

Extra Problem 1.

(a) For q and r rational, prove $q+r$ is rational.
(b) For q rational and r irrational, prove $q+r$ is irrational.
(c) Give an example where q and r are irrational and $q+r$ is rational.

Extra Problem 2: The Submarine Riddle (Part I).

Consider the following math riddle, in which our goal is to destroy an enemy submarine. At each time $t \in \mathbb{N}=\{1,2,3, \ldots\}$ the submarine is located at an integer on the number line, and moves as follows. The submarine has an integer initial position $p \in \mathbb{Z}$ and a constant integer velocity $v \in \mathbb{Z}$. So at time 1 the submarine's position is $p+v$, at time 2 its position is $p+2 v, \ldots$, and at time t its position is $p+t v$. The values of the integers p and v are unknown to us. At each time $t \in \mathbb{N}$ we get to fire a missile at a single integer position on the number line. Can we devise a strategy for firing our missiles so that we are guaranteed to eventually hit the enemy submarine with unknown initial position p and velocity v ? That is, can we devise a strategy for firing our missiles so that we eventually hit every possible enemy submarine? Note that a firing strategy is a function $f: \mathbb{N} \rightarrow \mathbb{Z}$, where $f(t) \in \mathbb{Z}$ is the location where we fire our missile at time $t \in \mathbb{N}$.

On Homework 3 we will solve this riddle completely, but for now we consider only two simplified cases.
(a) Prove \mathbb{Z} is countable by giving a one-to-one and onto function $h: \mathbb{N} \rightarrow \mathbb{Z}$.
(b) Show how to solve the submarine riddle if the initial position $p \in \mathbb{Z}$ is arbitrary but we add the simplifying assumption that the velocity v is zero.
(c) Show how to solve the submarine riddle if the velocity $v \in \mathbb{Z}$ is arbitrary but we add the simplifying assumption that the initial position p is zero.
Hint: For (b) and (c), use function $h: \mathbb{N} \rightarrow \mathbb{Z}$ from (a) to give a firing strategy $f: \mathbb{N} \rightarrow \mathbb{Z}$.

