Name: \qquad

- For \#1, no justification is necessary - the right answer alone suffices. However, extra explanation may help you get more partial credit in the presence of mistakes.
For $\# 2, \# 3$, and $\# 4$, explain your logic fully and write complete sentences.
For $\# 5$, just say "True" or "False". No partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement:
"I will not give, receive, or use any unauthorized assistance."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

CSU Math 366

Practice Midterm 2B

1 (a) (3 points) Write the element $\alpha=(1523)(235)(12) \in S_{5}$ in disjoint cycle form.
(b) (3 points) Write $\beta=(1248)(73982) \in S_{9}$ as a product of (not necessarily disjoint) 2 -cycles. Is β an element of the alternating group A_{9} ?
(c) (4 points) If $\gamma=(1432)(2453) \in S_{5}$, then write its inverse γ^{-1} in disjoint cycle form.

CSU Math 366

Practice Midterm 2B

2 Let G be a group, and let $g \in G$.
(a) (3 points) Define $\langle g\rangle$, the cyclic subgroup generated by g.
(b) (7 points) Prove that $\langle g\rangle$ is a subgroup of G.

CSU Math 366
 Practice Midterm 2B

3 (a) (3 points) Define what it means for a subgroup H of G to be normal in G.
(b) (7 points) Prove that if H is a subroup of G with $|G| /|H|=2$, then H is normal in G.

CSU Math 366
 Practice Midterm 2B

4 (a) (3 points) Define what it means for a function $\phi: G \rightarrow \bar{G}$ between groups G and \bar{G} to be an isomorphism.
(b) (7 points) Let $\phi: G \rightarrow \bar{G}$ be an isomorphism. Prove that if G is abelian, then \bar{G} is also abelian.

CSU Math 366

Practice Midterm 2B

5 No justification needed: just say "True" or "False". No partial credit.
(a) True or False: If H and H^{\prime} are normal subgroups of a group G, then $|H|=\left|H^{\prime}\right|$.
(b) True or False: There is an isomorphism from the dihedral group D_{6} to the alternating group A_{4}.
(c) True or False: If p is a prime number, then $|\operatorname{Aut}(\mathbb{Z} / p \mathbb{Z})|=|U(p)|=p-1$.
(d) True or False: Recall S_{n} is the group of permutations of $\{1,2, \ldots, n\}$.

For any $i \in\{1,2, \ldots, n\}$, we have that $n!=n \cdot\left|\operatorname{stab}_{S_{n}}(i)\right|$, which therefore gives $\left|\operatorname{stab}_{S_{n}}(i)\right|=(n-1)!$.
(e) True or False: Any quotient group of an abelian group is also abelian.

CSU Math 366
Practice Midterm 2B
This page intentionally left blank.

CSU Math 366
Practice Midterm 2B
This page intentionally left blank.

