
CSU Math 366 Practice Midterm 2B

Name:

• For #1, no justification is necessary — the right answer alone suffices. However, extra
explanation may help you get more partial credit in the presence of mistakes.

For #2, #3, and #4, explain your logic fully and write complete sentences.

For #5, just say “True” or “False”. No partial credit is available.

• No notes, books, calculators, or other electronic devices are permitted.

• Please sign below to indicate you accept the following statement:

“I will not give, receive, or use any unauthorized assistance.”

Signature:

Problem Total Points Score

1 10

2 10

3 10

4 10

5 10

Total 50
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1 (a) (3 points) Write the element α = (1523)(235)(12) ∈ S5 in disjoint cycle form.

(b) (3 points) Write β = (1248)(73982) ∈ S9 as a product of (not necessarily disjoint)
2-cycles. Is β an element of the alternating group A9?

(c) (4 points) If γ = (1432)(2453) ∈ S5, then write its inverse γ−1 in disjoint cycle
form.
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2 Let G be a group, and let g ∈ G.

(a) (3 points) Define 〈g〉, the cyclic subgroup generated by g.

(b) (7 points) Prove that 〈g〉 is a subgroup of G.
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3 (a) (3 points) Define what it means for a subgroup H of G to be normal in G.

(b) (7 points) Prove that if H is a subroup of G with |G|/|H| = 2, then H is normal
in G.
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4 (a) (3 points) Define what it means for a function φ : G→ G between groups G and

G to be an isomorphism.

(b) (7 points) Let φ : G→ G be an isomorphism. Prove that if G is abelian, then G
is also abelian.
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5 No justification needed: just say “True” or “False”. No partial credit.

(a) True or False: If H and H ′ are normal subgroups of a group G, then |H| = |H ′|.

(b) True or False: There is an isomorphism from the dihedral group D6 to the alter-
nating group A4.

(c) True or False: If p is a prime number, then |Aut(Z/pZ)| = |U(p)| = p− 1.

(d) True or False: Recall Sn is the group of permutations of {1, 2, . . . , n}.
For any i ∈ {1, 2, . . . , n}, we have that n! = n · |stabSn(i)|, which therefore gives
|stabSn(i)| = (n− 1)!.

(e) True or False: Any quotient group of an abelian group is also abelian.
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