Practice Midterm 1A

Name: \qquad

- For $\# 1, \# 2, \# 3$, and $\# 4$, explain your logic fully and write complete sentences.

For $\# 5$, just say "True" or "False". No partial credit is available.

- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement:
"I will not give, receive, or use any unauthorized assistance."

Signature:

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

CSU Math 366

Practice Midterm 1A

1 (a) (5 points) Define what it means for a group G to be commutative (which means the same thing as Abelian).
(b) (5 points) Let G be a group and let $g \in G$. Define the order of g (denoted $|g|$).

CSU Math 366

Practice Midterm 1A

2 (a) (5 points) Draw the Cayley table (multiplication table) for $U(8)$. Is $U(8)$ a cyclic group?
Remark: Recall that $U(8)$ is the set of numbers less than 8 that are relatively prime to 8, with group operation multiplication modulo 8.
(b) (5 points) Write $(123)(124)(24) \in S_{4}$ in disjoint cycle form.

CSU Math 366
 Practice Midterm 1A

3 Let G be a group, and let $a \in G$.
(a) (3 points) Define $\langle a\rangle$, the cyclic subgroup generated by a.

CSU Math 366

Practice Midterm 1A

(b) (7 points) Prove that $\langle a\rangle$ is a subgroup of G by using the Two-Step Subgroup Test.

CSU Math 366
 Practice Midterm 1A

4 Let G be a group. Prove the cancellation law. That is, prove that if $a, b, c \in G$ satisfy $a b=a c$, then this implies that $b=c$.

Practice Midterm 1A

5 No justification needed: just say "True" or "False". No partial credit.
(a) True or False: Let G be a group that is commutative. If $a b=c a$ for elements $a, b, c \in G$, then this implies that $b=c$.
(b) True or False: The element 17 generates \mathbb{Z}_{99}.
(c) True or False: Let S be a set, and let $\star: S \times S \rightarrow S$ be a binary relation. If \star is commutative, then \star is also associative.
(d) True or False: If G is a group and $g \in G$ satisfies $|g|=10$, then $g^{25} \neq i d$.
(e) True or False: The subset $\left\{R_{0}, H, V, D, D^{\prime}\right\}$ forms a subgroup of $D_{4}=\left\{R_{0}, F_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\}$, the symmetries of the square under composition.

CSU Math 366
Practice Midterm 1A
This page intentionally left blank.

