Homework 9

Due Friday, April 17, at 5pm Mountain Time on Gradescope

Reading. Chapter 9

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

- 1. Let H be a subgroup of group G, and let $a \in G$.
 - (i) Give an example to show that it is possible to have $aH \neq Ha$, i.e., the left coset of H in G by a may not be equal to the right coset of H in G by a (write out the details of this example).
 - (ii) Prove that if G is abelian, then necessarily aH = Ha.
- 2. Let H be a subgroup of group G, and let $a, b \in G$.
 - (i) Prove that $a \in aH$.
 - (ii) Prove that (ab)H = a(bH).
 - (iii) Prove that aH = bH if and only if $a \in bH$. Hint: For \Leftarrow , use (ii).
 - (iv) For any $a, b \in G$, prove that either aH = bH or else $aH \cap bH = \emptyset$. Hint: It suffices to show that if there is some $c \in aH \cap bH$, then aH = bH.
- 3. Let H be a subgroup of group G, and let $a, b \in G$. Prove that |aH| = |bH|. Hint: Define a function from aH to bH, and show that this function is a bijection (both surjective and injective).
- 4. Let G be a group of permutations of the set S, and let $i \in S$. Recall that the *stabilizer* of i in G is $\operatorname{Stab}_G(i) = \{\phi \in G \mid \phi(i) = i\}$. Prove that $\operatorname{Stab}_G(i)$ is a subgroup of G.