Homework 8

Due Friday, April 10, at 5pm Mountain Time on Gradescope

Reading. Chapter 7

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Let G and \overline{G} be groups. Prove that if $\phi: G \to \overline{G}$ is an isomorphism, then so is $\phi^{-1}: \overline{G} \to G$.

Remark: You may take it as a fact that if ϕ is bijective, then ϕ^{-1} is also bijective.

2. Let G be a group. Prove that if $\phi: G \to G$ and $\alpha: G \to G$ are automorphisms, then so is $\alpha \circ \phi: G \to G$.

Remark: You may take it as a fact that $\alpha \circ \phi$ is bijective since both ϕ and α are.

3. Let G be a group. Prove that the set Aut(G) of automorphisms of G is also a group, with binary operation given by function composition.

Remark: Write that #2 shows that composition is indeed a binary operation on Aut(G). Show that an identity exists. Use #1 to show that inverses exist. Say why we have associativity.

- 4. True or False. For the answers that are true, give a brief explanation of why. This could be no more than citing something from the book or from class. For the answers that are false, briefly say why (perhaps by giving a counterexample).
 - (a) If G is a cyclic group, then Aut(G) is a cyclic group.
 - (b) The groups D_6 and S_4 are isomorphic.
 - (c) If groups G and \overline{G} are isomorphic, then any bijective function $\phi: G \to \overline{G}$ taking the identity id_G in G to the identity $id_{\overline{G}}$ in \overline{G} is an isomorphism.