Homework 7

Due Friday, April 3 at 5pm Mountain Time on Gradescope

Reading. Chapter 6
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Let $n \geq 2$. Prove that A_{n} is a subgroup of S_{n} by using the Two-Step Subgroup Test.
2. (a) Let $(\mathbb{R},+)$ be the group of real numbers equipped with addition, and let $\left(\mathbb{R}_{>0}, \cdot\right)$ be the group of positve (that's what the >0 means) real numbers equipped with multiplication. You may take it as a fact that the function $\phi: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ defined by $\phi(x)=2^{x}$ is bijective. Prove that ϕ is an isomorphism.
(b) You may take it as a fact that the function $\phi: \mathbb{Z}_{4} \rightarrow\left\{R_{0}, R_{90}, R_{180}, R_{270}\right\}$ defined by $\phi(j)=R_{90 \cdot j}$ is bijective. Prove that ϕ is an isomorphism.
Remark: For your own education, it is a good idea to learn how to show that the function ϕ in (a) and the function ϕ in (b) are bijective. Please feel free for ask me for help on this!
3. The function $\phi: U(8) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ defined by $\phi(1)=(0,1), \phi(3)=(0,0), \phi(5)=(1,0)$, and $\phi(7)=(1,1)$ is bijective. Nevertheless, show that ϕ is not an isomorphism.
Hint: You should do this by finding specific elements $a, b \in U(8)$ such that $\phi(a b) \neq$ $\phi(a)+\phi(b)$.
4. True or False. No justification is necessary to get credit (but you ought to know how to justify your answers; feel free to ask me for help on this.)
(a) The function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\phi(x)=x^{3}$ is bijective.
(b) The function $\phi:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$ defined by $\phi(x)=x^{3}$ is an isomorphism.
(c) If $\phi: G \rightarrow H$ is an isomorphism, then ϕ must map the identity in group G to the identity in group H.
(d) If $\phi: G \rightarrow H$ is an isomorphism, then $\phi^{-1}: H \rightarrow G$ is an isomorphism.
(e) If G and H are both groups of size 10 , then G and H are isomorphic to each other.
