CSU Math 366

Homework 4

Due Friday, February 21 at the beginning of class

Reading. Chapter 4
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Prove that if G is a group and a is an element in G, then a has a unique inverse in G. Remark: Use multiplicative notation.
2. Re-write the above proof in additive notation, following exactly the same steps you did above.

Remark: 0 is a good name for the identity when using additive notation. Additive notation is typically used only when the group G is commutative, but don't assume that G is commutative here - it's not needed.
3. Prove that if $\operatorname{gcd}(k, n)=1$, then $k \in \mathbb{Z}_{n}$ generates \mathbb{Z}_{n}.

Remark: You can't cite Corollary 4 on page 80 (or Corollary 3 on page 80); I am asking you to reprove one direction of this result. You should refer to our notes from class!
4. Use the (extended) Euclidean Algorithm to find integers $s, t \in \mathbb{Z}$ such that $51 s+187 t=$ $\operatorname{gcd}(51,187)$.
Remark: You can do the computations with no words at all, but then at the end you should conclude by writing "So $s=$?? and $t=$?? solves $51 s+187 t=\operatorname{gcd}(51,187)$."

