Homework 3

Due Friday, February 14 at the beginning of class

Reading. Chapter 4

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

- (a) Watch the YouTube video https://www.youtube.com/watch?v=JUzYl1TYMcU, and then use the Euclidean Algorithm (described within) to compute gcd(63, 141), the greatest common divisor of 63 and 141. Spoiler alert: You should get gcd(63, 141) = 3.
 - (b) Watch the YouTube video https://www.youtube.com/watch?v=6KmhCKxFWOs, and then use the extended Euclidean Algorithm (described within) to find integers $s, t \in \mathbb{Z}$ such that $63s + 141t = \gcd(63, 141) = 3$.

Remark: I understand the Euclidean takes some getting-used-to, so if you come to office hours or ask me after class then I will show you how to do this problem! (In fact, this is the case for all problems.) Don't think of this as a random homework problem that you can safely skip — the Euclidean algorithm is fundamental for abstract algebra.

2. Recall that $\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z} \text{ with } b \neq 0\}$ is the set of all *rational numbers*, and that \mathbb{Q}^* is the set of all rational numbers excluding 0. That is, \mathbb{Q}^* is the set of all fractions of the form $\frac{a}{b}$ with $b \neq 0$ and with $a \neq 0$. Show that (\mathbb{Q}^*, \cdot) is a group (under multiplication) by verifying the definition on page 13 of our class notes.

Hint: Do this as follows.

- First, to show that multiplication is a binary operation on \mathbb{Q}^* , you will show that given $\frac{a}{b}, \frac{a'}{b'} \in \mathbb{Q}^*$, their product $\frac{a}{b} \cdot \frac{a'}{b'}$ is also in \mathbb{Q}^* . Is this product necessarily nonzero?
- Then, to show there is an identity, you will identify which element is the identity, and then show that this element satisfies the defining property of an identity.
- Then, to show there are inverses, you will take an arbitrary element $\frac{a}{b} \in \mathbb{Q}^*$, identify its inverse, and then show that this element satisfies the defining property of an inverse.
- Then, to show associativity, you can simply write "Finally, note that multiplication is associative on Q^{*}" — no need to write anything more!

Conclude by saying "Hence (\mathbb{Q}^*, \cdot) is a group." Remember to use grammatically correct sentences at each step!

3. Let G be a group, let $g \in G$, and let $n \ge 1$ be a positive integer. Show that $(g^{-1})^n$ is the inverse of g^n . In other words, show that $(g^n)^{-1} = (g^{-1})^n$.

Hint: Your proof could look like the following. "Note that

$$g^{n}(g^{-1})^{n} = \underbrace{gg\cdots g}_{n \text{ times}} \underbrace{g^{-1}g^{-1}\cdots g^{-1}}_{n \text{ times}} = \dots$$

and

$$(g^{-1})^n g^n = \underbrace{g^{-1}g^{-1}\cdots g^{-1}}_{n \ times} \underbrace{gg\cdots g}_{n \ times} = \dots$$

Hence by the definition of an inverse, we have shown that" Your task is to show all the work and to complete all the steps in the missing blanks!

Remark: Since the above homework problem shows that $(g^n)^{-1} = (g^{-1})^n$, we may safely denote both elements by the common symbol q^{-n} .

4. Let G be a group, and let $a \in G$. Show that $\langle a \rangle$ is a subgroup of G by using the One-Step Subgroup Test.

Hint: On Wednesday, Feb 5, we showed that $\langle a \rangle$ is a subgroup of G using the Two-Step Subgroup test. On Friday, Feb 7, we showed that $\langle a \rangle$ is a subgroup of G using the One-Step Subgroup test, even though this isn't written up in our class notes. I am asking you to re-do this proof from Friday in class. Neither proof is "better" than the other — you can often prove something in multiple ways!