Homework 1

Due Friday, January 31 at the beginning of class

Reading. Chapters 1, 2

Remark. Your answers should be briefly explained. If you're only writing math symbols, then you're not explaining things — make grammatically correct sentences by adding in just a few English words. For example, suppose the assigned problem were "Solve $x^2-3x+2=0$." The answer

" $x^{2} - 3x + 2 = 0$ (x - 1)(x - 2) = 0 x = 1 or x = 2,"

would not make me 100% happy, but the following answer would:

"Since $x^2 - 3x + 2 = 0$ implies (x - 1)(x - 2) = 0, we have x = 1 or x = 2."

Note we added only four English words.

For every homework in this class, a homework problem with no English words will be returned without being graded. For #4 on this homework, for example, you could write "Below is a multiplication table for D_5 ," and that would be more than sufficient.

Let $D_5 = \{R_0, R_{72}, R_{144}, R_{216}, R_{288}, F_1, F_2, F_3, F_4, F_5\}$ be the group of symmetries of the regular pentagon, or in other words, the *dihedral group of order 10*. The elements of this group are drawn below. The five rotations R_0 , R_{72} , R_{144} , R_{216} , R_{288} are counterclockwise rotations by 0°, 72°, 144°, 216°, 288°. The five flips F_1 , F_2 , F_3 , F_4 , F_5 are through the vertices labeled 1, 2, 3, 4, 5 in counterclockwise order, with vertex 1 at the top, as drawn below.

Image credit: http://mathonline.wikidot.com/the-group-of-symmetries-of-the-pentagon

Problems.

1. Draw a picture showing why $F_5F_3 = R_{288}$.

Remark: This picture could be analogous to the picture why, in our class notes (1) on page 2, we have that $HR_{90} = D$ in the group D_4 .

- 2. What is F_3R_{288} ? What is $R_{288}F_3$? Since it is not the case that ba = ab for all elements $a, b \in D_5$, this means that the group D_5 is not *commutative*, or equivalently, not *Abelian* (these two words mean the same thing).
- 3. Verify that $F_2(F_3R_{144}) = (F_2F_3)R_{144}$. It turns out that c(ba) = (cb)a for all $a, b, c \in D_5$, and for this reason we say that D_5 is associative.
- 4. Fill out the multiplication table (or Cayley table) for the dihedral group D_5 of symmetries of the regular pentagon. As we did in class for D_4 , write the composition ba (which means "do a first and b second") in the column corresponding to $a \in D_5$ and in the row corresponding to $b \in D_5$.

First operation										
	R_0	R_{72}	R_{144}	R_{216}	R_{288}	F_1	F_2	F_3	F_4	F_5
R_0										
R_{72}										
R_{144}										
$R_{216} \\ R_{288}$										
R_{288}										
F_1										
F_2										
F_3										
F_4										
F_5										

 \checkmark Second operation

¹https://www.math.colostate.edu/~adams/teaching/Notes_Math366.pdf