Homework 1

Due Friday, January 31 at the beginning of class

Reading. Chapters 1, 2
Remark. Your answers should be briefly explained. If you're only writing math symbols, then you're not explaining things - make grammatically correct sentences by adding in just a few English words. For example, suppose the assigned problem were "Solve $x^{2}-3 x+2=0$." The answer

$$
" x^{2}-3 x+2=0 \quad(x-1)(x-2)=0 \quad x=1 \text { or } x=2, "
$$

would not make me 100% happy, but the following answer would:
"Since $x^{2}-3 x+2=0$ implies $(x-1)(x-2)=0$, we have $x=1$ or $x=2$."
Note we added only four English words.
For every homework in this class, a homework problem with no English words will be returned without being graded. For \#4 on this homework, for example, you could write "Below is a multiplication table for D_{5}," and that would be more than sufficient.

Let $D_{5}=\left\{R_{0}, R_{72}, R_{144}, R_{216}, R_{288}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$ be the group of symmetries of the regular pentagon, or in other words, the dihedral group of order 10. The elements of this group are drawn below. The five rotations $R_{0}, R_{72}, R_{144}, R_{216}, R_{288}$ are counterclockwise rotations by $0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$. The five flips $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ are through the vertices labeled $1,2,3,4,5$ in counterclockwise order, with vertex 1 at the top, as drawn below.

Image credit: http://mathonline.wikidot.com/the-group-of-symmetries-of-the-pentagon

Problems.

1. Draw a picture showing why $F_{5} F_{3}=R_{288}$.

Remark: This picture could be analogous to the picture why, in our class notes $\left({ }^{1}\right)$ on page 2, we have that $H R_{90}=D$ in the group D_{4}.
2. What is $F_{3} R_{288}$? What is $R_{288} F_{3}$?

Since it is not the case that $b a=a b$ for all elements $a, b \in D_{5}$, this means that the group D_{5} is not commutative, or equivalently, not Abelian (these two words mean the same thing).
3. Verify that $F_{2}\left(F_{3} R_{144}\right)=\left(F_{2} F_{3}\right) R_{144}$.

It turns out that $c(b a)=(c b) a$ for all $a, b, c \in D_{5}$, and for this reason we say that D_{5} is associative.
4. Fill out the multiplication table (or Cayley table) for the dihedral group D_{5} of symmetries of the regular pentagon. As we did in class for D_{4}, write the composition $b a$ (which means "do a first and b second") in the column corresponding to $a \in D_{5}$ and in the row corresponding to $b \in D_{5}$.

First operation

	R_{0}	R_{72}	R_{144}	R_{216}	R_{288}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
R_{0}										
R_{72}										
R_{144}										
R_{216}										
R_{288}										
F_{1}										
F_{2}^{1}										
F_{3}										
F_{4}										
F_{5}										

\nwarrow Second operation

[^0]
[^0]: ${ }^{1}$ https://www.math.colostate.edu/~adams/teaching/Notes_Math366.pdf

