CSU Math 366
Spring 2019

Homework 8

Due Friday, April 12 at the beginning of class

Reading. Chapter 7

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Let G and \bar{G} be groups. Prove that if $\phi: G \rightarrow \bar{G}$ is an isomorphism, then so is $\phi^{-1}: \bar{G} \rightarrow G$.

Remark: You may take it as a fact that ϕ bijective implies that ϕ^{-1} is bijective.
2. Let G be a group. Prove that if $\phi: G \rightarrow G$ and $\alpha: G \rightarrow G$ are automorphisms, then so is $\alpha \circ \phi: G \rightarrow G$.
Remark: You may take it as a fact that $\alpha \circ \phi$ is bijective since both ϕ and α are.
3. Let G be a group. Prove that the set $\operatorname{Aut}(G)$ of automorphisms of G is also a group, with binary operation given by function composition.
Remark: Write that \#2 shows that composition is indeed a binary operation on $\operatorname{Aut}(G)$. Show that an identity exists. Use \#1 to show that inverses exist. Say why we have associativity.
4. True or False. For the answers that are true, give a brief explanation of why. This could be no more than citing something from the book or from class. For the answers that are false, briefly say why (perhaps by giving a counterexample).
(a) If G is a cyclic group, then $\operatorname{Aut}(G)$ is a cyclic group.
(b) The groups D_{6} and S_{4} are isomorphic.
(c) If groups G and \bar{G} are isomorphic, then any bijective function $\phi: G \rightarrow \bar{G}$ taking the identity $i d_{G}$ in G to the identity $i d_{\bar{G}}$ in \bar{G} is an isomorphism.

