Homework 7

Due Friday, April 5 at the beginning of class

Reading. Chapter 6

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

- 1. Let $n \ge 2$. Prove that A_n is a subgroup of S_n by using either the One-Step or Two-Step Subgroup Test (your choice; either works).
- 2. (a) Let $(\mathbb{R}, +)$ be the group of real numbers equipped with addition, and let $(\mathbb{R}_{>0}, \cdot)$ be the group of *positve* (that's what the > 0 means) real numbers equipped with multiplication. You may take it as a fact that the function $\phi \colon \mathbb{R} \to \mathbb{R}_{>0}$ defined by $\phi(x) = 2^x$ is bijective. Prove that ϕ is an isomorphism.
 - (b) You may take it as a fact that the function $\phi \colon \mathbb{Z}_4 \to \{R_0, R_{90}, R_{180}, R_{270}\}$ defined by $\phi(j) = R_{90,j}$ is bijective. Prove that ϕ is an isomorphism.
- 3. The function $\phi: U(8) \to \mathbb{Z}_2 \times \mathbb{Z}_2$ defined by $\phi(1) = (1, 1), \phi(3) = (1, 0), \phi(5) = (0, 1),$ and $\phi(7) = (0, 0)$ is bijective. Nevertheless, show that ϕ is not an isomorphism. *Hint: You should do this by finding specific elements* $a, b \in U(8)$ *such that* $\phi(ab) \neq \phi(a) + \phi(b)$.
- 4. True or False. No justification is necessary to get credit (but you *ought* to know how to justify your answers.)
 - (a) The function $\phi \colon \mathbb{R} \to \mathbb{R}$ defined by $\phi(x) = x^3$ is bijective.
 - (b) The function $\phi: (\mathbb{R}, +) \to (\mathbb{R}, +)$ defined by $\phi(x) = x^3$ is an isomorphism.
 - (c) If $\phi: G \to H$ is an isomorphism, then ϕ must map the identity in group G to the identity in group H.
 - (d) If $\phi: G \to H$ is an isomorphism, then $\phi^{-1}: H \to G$ is an isomorphism.
 - (e) If G and H are both groups of size 10, then G and H are isomorphic to each other.