Homework 4

Due Friday, February 22 at the beginning of class

Reading. Chapter 4

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

- 1. Prove that the identity element in a group G is unique.
- 2. Prove that if gcd(k, n) = 1, then $k \in \mathbb{Z}_n$ generates \mathbb{Z}_n . Remark: You can't cite Corollary 4 on page 80; I am asking you to reprove one direction of this result. You should refer to our notes from class!
- 3. The center Z(G) of a group G is the subset of the elements that commute with all elements of G. That is,

 $Z(G) = \{ a \in G \mid ax = xa \text{ for all } x \in G \}.$

Use the Two-Step Subgroup Test to show that Z(G) is a subgroup of G.

4. Use the (extended) Euclidean Algorithm to find integers $s, t \in \mathbb{Z}$ such that $51s + 187t = \gcd(51, 187)$.

Remark: You can do the computations with no words at all, but then at the end you should conclude by writing "So s = ?? and t = ?? solves $51s + 187t = \gcd(51, 187)$."