CSU Math 366
Spring 2019

Homework 4

Due Friday, February 22 at the beginning of class

Reading. Chapter 4
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Prove that the identity element in a group G is unique.
2. Prove that if $\operatorname{gcd}(k, n)=1$, then $k \in \mathbb{Z}_{n}$ generates \mathbb{Z}_{n}.

Remark: You can't cite Corollary 4 on page 80; I am asking you to reprove one direction of this result. You should refer to our notes from class!
3. The center $Z(G)$ of a group G is the subset of the elements that commute with all elements of G. That is,

$$
Z(G)=\{a \in G \mid a x=x a \text { for all } x \in G\}
$$

Use the Two-Step Subgroup Test to show that $Z(G)$ is a subgroup of G.
4. Use the (extended) Euclidean Algorithm to find integers $s, t \in \mathbb{Z}$ such that $51 s+187 t=$ $\operatorname{gcd}(51,187)$.

Remark: You can do the computations with no words at all, but then at the end you should conclude by writing "So $s=?$? and $t=$?? solves $51 s+187 t=\operatorname{gcd}(51,187)$."

