Homework 10

Due Friday, April 26 at the beginning of class

Reading. Chapter 10

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

- 1. Let K be the subgroup of D_4 given by $K = \{R_0, R_{180}\}$. Prove that K is normal in D_4 by showing that xK = Kx for all $x \in D_4$. Draw the Cayley table for the quotient group D_4/K .
- 2. Let H be a subgroup of G with |G|/|H| = 2. Prove that H is normal in G.

Hint: Let $x \in G$. If $x \notin H$, then explain why xH is the set of all elements in G not in H. Is the same true for Hx?

Remark: The above problem shows that A_n is a normal subgroup of the symmetric group S_n , since $|S_n|/|A_n| = 2$. It also shows that the subgroup Rot of all rotations is a normal subgroup of the dihedral group D_n , since $|D_n|/|Rot| = 2$.

- 3. Let H be a subgroup of group G. Prove that H is a normal subgroup of G if and only if $xHx^{-1} \subseteq H$ for all $x \in G$.
- 4. Let $\phi: G \to \overline{G}$ be a homomorphism, which means that for all $a, b \in G$ we have $\phi(ab) = \phi(a)\phi(b)$. We will study homomorphisms in Chapter 10; if a homomorphism is bijective then it is called an *isomorphism* (which we have seen before).

Given a homomorphism $\phi \colon G \to \overline{G}$, its *kernel* is defined as

$$\ker \phi = \{ x \in G \mid \phi(x) = id_{\overline{G}}. \}$$

Here $id_{\overline{G}}$ is the identity in \overline{G} . Use the Two-Step Subgroup Test to show that ker ϕ is a subgroup of G.