Homework 1

Due Friday, February 1 at the beginning of class

Reading. Chapters 1, 2
Let $D_{5}=\left\{R_{0}, R_{72}, R_{144}, R_{216}, R_{288}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$ be the group of symmetries of the regular pentagon, or in other words, the dihedral group of order 10. The elements of this group are drawn below. The five rotations $R_{0}, R_{72}, R_{144}, R_{216}, R_{288}$ are counterclockwise rotations by $0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$. The five flips $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ are through the vertices labeled $1,2,3,4,5$ in counterclockwise order, with vertex 1 at the top, as drawn below.

Image credit: http://mathonline.wikidot.com/the-group-of-symmetries-of-the-pentagon

Problems.

1. Draw a picture showing why $F_{5} F_{3}=R_{288}$.

Remark: This picture could be analogous to the picture why, in our class notes $\left({ }^{1}\right)$ on page 2, we have that $H R_{90}=D$ in the group D_{4}.
2. What is $F_{2} R_{144}$? What is $R_{144} F_{2}$?

Since it is not the case that $b a=a b$ for all elements $a, b \in D_{5}$, this means that the group D_{5} is not commutative, or equivalently, not Abelian (these two words mean the same thing).

[^0]3. Verify that $F_{4}\left(R_{72} F_{1}\right)=\left(F_{4} R_{72}\right) F_{1}$.

It turns out that $c(b a)=(c b) a$ for all $a, b, c \in D_{5}$, and for this reason we say that D_{5} is associative.
4. Fill out the multiplication table (or Cayley table) for the dihedral group D_{5} of symmetries of the regular pentagon. As we did in class for D_{4}, write the composition $b a$ (which means "do a first and b second") in the column corresponding to $a \in D_{5}$ and in the row corresponding to $b \in D_{5}$.

First operation

	R_{0}	R_{72}	R_{144}	R_{216}	R_{288}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
R_{0}										
R_{72}										
R_{144}										
R_{216}										
R_{288}										
F_{1}^{\prime}										
F_{2}										
F_{3}^{1}										
F_{4}^{1}										
F_{5}										
\nwarrow										

[^0]: ${ }^{1}$ https://www.math.colostate.edu//~adams/teaching/math366spr2019/NotesMath366.pdf

