Homework 7

Due Friday, October 25 at the beginning of class

Reading.

Sections 7.1, 7.2, 7.3
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Use the Euclidean algorithm to find $\operatorname{gcd}(63,141)$, and also to write $\operatorname{gcd}(63,141)$ as a linear combination of 63 and 141 (i.e. write $\operatorname{gcd}(63,141)=m \cdot 63+n \cdot 141$ for some $m, n \in \mathbb{Z})$.
2. Use the Euclidean algorithm to find the multiplicative inverse of $4 \bmod 19$ (i.e., the integer y between 0 and 18 such that $4 y \equiv 1 \bmod 19$).
3. Solve $4 x \equiv 7 \bmod 19$, where x is an integer between 0 and 18 .
4. A deck of cards consists of $52=13 \cdot 4$ cards: an ace, two, three, ..., nine, ten, jack, queen, and king (13 values) from each of 4 different suits: $\circlearrowleft, \diamond, \boldsymbol{\AA}, \boldsymbol{\uparrow}$. A poker hand consists of a subset of 5 of these 52 cards.
(a) How many different full house poker hands are there? A full house consists of triple of cards of the same value, plus a pair of cards of the same value. We consider the hands $\{K \bigcirc, K \diamond, K \boldsymbol{\uparrow}, 2 \boldsymbol{\natural}, 2 \diamond\}$ and $\{2 \diamond, K \boldsymbol{\downarrow}, 2 \boldsymbol{\phi}, K \diamond, K \oslash\}$ to be the same.
(b) How many different two pair poker hands are there? A two pair consists of a pair of cards of one value, another pair of cards of a different value, and then a fifth card of a distinct value. We consider the hands $\{9 \diamond, 9 \diamond, 5 \boldsymbol{\uparrow}, 5 \mathbf{\&}, 2 \diamond\}$ and $\{5 \boldsymbol{\downarrow}, 5 \boldsymbol{\downarrow}, 9 \diamond, 9 \diamond, 2 \diamond\}$ to be the same.
