Homework 6

Due Friday, October 18 at the beginning of class

Reading.

Sections 6.6, 6.7, 6.8, 6.9
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. In how many ways can people (any number of people) sit in a row of 9 subway seats, so that no two people sit next to each other?
For example, there are two ways for people to sit in 1 seat: it could be empty or full.
For example, there are three ways for people to sit in 2 seats: "empty empty", "empty full", or "full empty". The configuration "full full" is not possible since no two people are allowed to sit next to each other.
Hint: Write "Let S_{n} be the number of ways for people to sit in a row of n seats." Find and justify a recurrence relation for S_{n}.
2. All variables in this problem are integers. Show that
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
(c) If $a \mid b$ and $a \nmid c$ then $a \nmid(b-c)$.

Hint: Suppose for a contradiction that we had $a \mid(b-c)$. Use $a \mid b$ to show this would imply a|c, a contradiction.
(d) If p is a prime and $p \mid a b$, then either $p \mid a$ or $p \mid b$ (or both).

Hint: Consider prime factorizations!
3. Prove that if p is a prime number, then \sqrt{p} is irrational.

Hint: Edit, as needed, our proof from class that $\sqrt{2}$ is irrational
4. A deck of cards consists of $52=13 \cdot 4$ cards: an ace, two, three, ..., nine, ten, jack, queen, and king (13 values) from each of 4 different suits: $\odot, \diamond, \boldsymbol{\infty}, \boldsymbol{\uparrow}$. A poker hand consists of a subset of 5 of these 52 cards.
(a) How many 4-of-a-kind poker hands are there? We consider the hands $\{K \odot, K \diamond, K \boldsymbol{\oplus}, K \boldsymbol{\phi}, 2 \diamond\}$ and $\{2 \diamond, K \mathbf{\phi}, K \boldsymbol{\phi}, K \diamond, K \odot\}$ to be the same.
(b) What fraction of all possible poker hands are 4-of-a-kinds?

