Homework 5

Due Friday, October 11 at the beginning of class

Reading.

Sections 4.3, 6.1, 6.2, 6.3, 6.4
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. When climbing a staircase, you can take either one or three stairs in a single step.
(a) Write "Let S_{n} be the number of ways to climb a staircase with n stairs." Prove the recurrence relation $S_{n}=S_{n-1}+S_{n-3}$.
(b) Write down what S_{0}, S_{1}, S_{2} are (or alternatively, what S_{1}, S_{2}, S_{3} are). No justification needed.
(c) Use (a) and (b) to answer the following question. How many ways are there to climb a staircase with 12 stairs?
2. Let F_{n} be the n-th Fibonacci number. Prove that $F_{1}^{2}+\ldots+F_{n}^{2}=F_{n} F_{n+1}$ for all $n \geq 1$.
3. Define the Lucas numbers by $L_{0}=2, L_{1}=1$, and $L_{n+1}=L_{n}+L_{n-1}$ for $n \geq 1$. Find L_{10}.
4. Suppose it were true that the Lucas numbers satisfied the formula

$$
L_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \quad \text { for some } \quad c_{1}, c_{2} \in \mathbb{R}
$$

Using the base cases $2=L_{0}=c_{1}+c_{2}$ and $1=L_{1}=c_{1} \frac{1+\sqrt{5}}{2}+c_{2} \frac{1-\sqrt{5}}{2}$, solve for c_{1} and c_{2}.
Remark: Your task is to solve a system of two equations $\left(2=c_{1}+c_{2}\right.$ and $1=c_{1} \frac{1+\sqrt{5}}{2}+$ $c_{2} \frac{1-\sqrt{5}}{2}$) in two unknowns (c_{1} and c_{2}), i.e. solve for the intersection point of two lines. This is something you probably learned how to do in your first high school algebra class!

Remark: What's the point of this exercise? In class on 10/2/19, we showed that $c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ satisfies the same recurrence relation as the Lucas numbers (or equivalently, the Fibonacci numbers). Hence when you find c_{1} and c_{2} satisfying the base cases for L_{0} and L_{1} in this exercise, you will have proven the theorem that gives an explicit formula for Lucas number $L_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ as a function of n.

