Homework 7

Due Friday, October 12 at the beginning of class

Reading.

Sections 6.6, 6.7, 6.8, 6.9
Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. (a) How many 4-of-a-kind poker hands are there? We consider the hands $\{K \odot, K \diamond, K \boldsymbol{\phi}, K \boldsymbol{\phi}, 2 \diamond\}$ and $\{2 \diamond, K \boldsymbol{\oplus}, K \boldsymbol{\phi}, K \diamond, K \odot\}$ to be the same.
(b) How many 3 -of-a-kind poker hands are there?
(Neither a full house nor a 4-of-a-kind are considered to be 3-of-a-kind hands).
2. In how many ways can you cover a $2 \times n$ chessboard with identical dominoes, where you must use exactly n dominoes each of size 2×1 ? Fully justify your answer.
Hint: Write "Let S_{n} be the number of ways to cover a board of size $2 \times n$."
3. All variables in this problem are integers. Show that
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid(b+c)$.
(c) If $a \mid b$ and $a \nmid c$ then $a \nmid(b+c)$.

Hint: Suppose for a contradiction that we had $a \mid(b+c)$. Use $a \mid b$ to show this would imply a|c, a contradiction.
(d) If p is a prime and $p \mid a b$, then either $p \mid a$ or $p \mid b$ (or both).

Hint: Consider prime factorizations!
4. Prove that if n is a positive integer that is not a square (i.e. there is no integer m with $n=m^{2}$), then \sqrt{n} is irrational.
Hint: Edit our proof from class that $\sqrt{2}$ is irrational. If you get stuck, then see the hint in the back of the book for Exercise 6.3.6.

