Practice Homework 13

Due never!

Remark. Make grammatically correct sentences by adding in just a few English words.

Problems.

1. Show that the graph drawn below is not 3 -colorable but is 4 -colorable.

2. Let G be a connected graph such that all vertices except $d+1$ have degree at most d (the remaining $d+1$ vertices may have degree larger than d). Prove that G is $(d+1)$-colorable.
3. Show that a graph G is a tree if and only if it contains no cycles, but adding any new edge creates a cycle. This is part (b) of Theorem 8.1.1.
4. Let G be a connected weighted graph with positive edge costs.
(a) Describe how to find a spanning tree for which the sum of the edge-costs is maximal.
Hint: Create a new weighted graph G^{\prime} by multiplying each edge weight of G by -1 .
(b) Describe how to find a spanning tree for which the product of the edge-costs is minimal.
Hint: Create a new weighted graph G^{\prime} by editing the edge weights of G using logarithms.
5. Show by an example that if we don't assume the triangle inequality, then a tour found by the Tree Shortcut Algorithm can be longer than 1000 times an optimal tour.
