Vietoris–Rips thickenings of spheres

Henry Adams (Colorado State University), Michał Adamaszek (MOSEK ApS), Florian Frick (Carnegie Mellon)

Thanks to my graduate students: Johnathan Bush, Brittany Carr, Mark Heim, Lara Kassab, Joshua Mirth, Alex Williams
Idea 1: Vietoris–Rips complexes of the circle

Idea 2: Metric thickenings

Idea 3: Vietoris–Rips thickenings of spheres

Idea 4: Borsuk–Ulam theorems
Idea 1: Vietoris–Rips complexes of the circle
 With Michał Adamaszek

Idea 2: Metric thickenings
 With Michał Adamaszek and Florian Frick
 SIAM Journal on Applied Algebra and Geometry 2, 597–619, 2018

Idea 3: Vietoris–Rips thickenings of spheres

Idea 4: Borsuk–Ulam theorems
 With Johnathan Bush and Florian Frick
 Mathematika 66, 79–102, 2020
Definition

For X a metric space and scale $r \geq 0$, the \textit{Vietoris–Rips simplicial complex} $VR(X; r)$ has

- vertex set X
- simplex \(\{x_0, \ldots, x_k\} \) when $\text{diam}(\{x_0, \ldots, x_k\}) \leq r$.

Definition

For X a metric space and scale $r \geq 0$, the \textit{Vietoris–Rips simplicial complex} $\text{VR}(X; r)$ has

- vertex set X
- simplex \{${x_0, \ldots, x_k}$\} when $\text{diam}(\{x_0, \ldots, x_k\}) \leq r$.
Definition

For X a metric space and scale $r \geq 0$, the \textit{Vietoris–Rips simplicial complex} $VR(X; r)$ has

- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when $\text{diam}(\{x_0, \ldots, x_k\}) \leq r$.
For X a metric space and scale $r \geq 0$, the \textit{Vietoris–Rips simplicial complex} $VR(X; r)$ has

- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when $\text{diam}(\{x_0, \ldots, x_k\}) \leq r$.

\[\text{Out}[72]= \text{Cech simplicial complex} \]
For X a metric space and scale $r \geq 0$, the Vietoris–Rips simplicial complex $\text{VR}(X; r)$ has

- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when $\text{diam}(\{x_0, \ldots, x_k\}) \leq r$.

Definition
Definition

For X a metric space and scale $r \geq 0$, the *Vietoris–Rips simplicial complex* $\text{VR}(X; r)$ has

- vertex set X
- simplex $\{x_0, \ldots, x_k\}$ when $\text{diam}(\{x_0, \ldots, x_k\}) \leq r$.
Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,
$\text{VR}(M; r) \simeq M.$
Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,

$$VR(M; r) \simeq M.$$

Theorem (Latschev, 2001)

For r small and $d_{GH}(X, M)$ small (depending on r),

$$VR(X; r) \simeq M.$$
Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,
\[\text{VR}(M; r) \simeq M. \]

Theorem (Latschev, 2001)

For r small and $d_{\text{GH}}(X, M)$ small (depending on r),
\[\text{VR}(X; r) \simeq M. \]
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$\text{VR}(S^1; r) \cong \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ S^1 & \text{for some } k \in \mathbb{N}. \end{cases}$$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$
\text{VR}(S^1; r) \approx \begin{cases}
S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\
\text{for some } k \in \mathbb{N}.
\end{cases}
$$

$r = \frac{1}{3}$, $r = \frac{2}{5}$, $r = \frac{3}{7}$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$VR(S^1; r) \simeq \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ \text{for some } k \in \mathbb{N}. \end{cases}$$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$VR(S^1; r) \approx \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ \text{for some } k \in \mathbb{N}. \end{cases}$$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$VR(S^1; r) \cong \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ \text{for some } k \in \mathbb{N}. \end{cases}$$

$r = \frac{1}{3}$

$r = \frac{2}{5}$

$r = \frac{3}{7}$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$VR(S^1; r) \simeq \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ \text{for some } k \in \mathbb{N}. \end{cases}$$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$\text{VR}(S^1; r) = \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ & \text{for some } k \in \mathbb{N}. \end{cases}$$

![Diagram showing the relationship between r and S^k for different values of k.](Torus.nb)
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$\text{VR}(S^1; r) \cong \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ \text{for some } k \in \mathbb{N}. \end{cases}$$

$r = \frac{1}{3}$
$r = \frac{2}{5}$
$r = \frac{3}{7}$
Idea 1: Let S^1 be the circle of unit circumference.

Theorem (Adamaszek, A)

$$VR(S^1; r) \begin{cases} S^{2k+1} & \text{if } \frac{k}{2k+1} < r < \frac{k+1}{2k+3} \\ \sqrt{\infty} S^{2k} & \text{if } r = \frac{k}{2k+1} \\ S^{2k+1} & \text{if } r = \frac{k}{2k+1} \\ S^{2k+1} & \text{for some } k \in \mathbb{N}. \end{cases}$$
Idea 2: Metric thickenings

The Vietoris–Rips simplicial complex may not be metrizable!

Metric space M \sim $X \subseteq M$ \sim $\text{VR}(X; r)$
Let X be a metric space and $r > 0$.

Definition

The *Vietoris–Rips metric thickening* is $\text{VR}^m(X; r)$

$$
\left\{ \sum_{i=0}^{k} \lambda_i x_i \middle| \lambda_i \geq 0, \sum_{i} \lambda_i = 1, x_i \in X, \text{diam} \{x_0, \ldots, x_k\} \leq r \right\},
$$
equipped with the 1-Wasserstein metric.
Let X be a metric space and $r > 0$.

Definition

The *Vietoris–Rips metric thickening* is $\text{VR}^m(X; r)$

$$\left\{ \sum_{i=0}^{k} \lambda_i \delta_{x_i} \middle| \lambda_i \geq 0, \sum_i \lambda_i = 1, x_i \in X, \text{diam}\{x_0, \ldots, x_k\} \leq r \right\},$$

equipped with the 1-Wasserstein metric.
Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then

$\text{VR}^m(M; r) \simeq M$.

Proof.

$\text{VR}^m(M; r) \xrightarrow{\Sigma_i \lambda_i \delta_{x_i}} \text{Fréchet mean} \xrightarrow{M}$

$\delta_x \leftrightarrow x$
Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then $\text{VR}^m(M; r) \simeq M$.

Proof.

\[
\text{VR}^m(M; r) \xrightarrow{\sum_i \lambda_i \delta_{x_i}} \text{Frechet mean} \xrightarrow{\delta_x \leftrightarrow x} M
\]
Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then

$$VR^m(M; r) \simeq M.$$

Proof.

$$VR^m(M; r) \xrightarrow{\sum_i \lambda_i \delta_{x_i}} \text{Fréchet mean} \xrightarrow{} M$$

With Joshua Mirth: version for Euclidean sets of positive reach.
Idea 3: We can now say something about the n-sphere S^n.

Theorem (Adamaszek, A, Frick)

$$VR^m(S^n; r) \simeq \begin{cases} S^n & r < r_c \\ S^n \times \frac{SO(n+1)}{A_{n+2}} & r = r_c \end{cases}$$

r_c = diameter of inscribed regular Δ^{n+1}.

$SO(n+1) =$ group of rotations in \mathbb{R}^{n+1}.

$A_{n+2} =$ group of rotations of Δ^{n+1}.

r_c = diameter of inscribed regular Δ^{n+1}.

$SO(n+1) =$ group of rotations in \mathbb{R}^{n+1}.

$A_{n+2} =$ group of rotations of Δ^{n+1}.

Idea 3: We can now say something about the n-sphere S^n.

Theorem (Adamaszek, A, Frick)

$$\text{VR}^m(S^n; r) \simeq \begin{cases} S^n & r < r_c \\ S^n \rtimes \frac{\text{SO}(n+1)}{A_{n+2}} & r = r_c \end{cases}$$

$r_c = \text{diameter of inscribed regular } \Delta^{n+1}$.
$\text{SO}(n+1) = \text{group of rotations in } \mathbb{R}^{n+1}$.
$A_{n+2} = \text{group of rotations of } \Delta^{n+1}$.
Idea 3: We can now say something about the n-sphere S^n.

Theorem (Adamaszek, A, Frick)

$$\text{VR}^m(S^n; r) \simeq \begin{cases} S^n & r < r_c \\ S^n \times \frac{SO(n+1)}{A_{n+2}} & r = r_c. \end{cases}$$

$r_c =$ diameter of inscribed regular Δ^{n+1}.
$SO(n+1) =$ group of rotations in \mathbb{R}^{n+1}.
$A_{n+2} =$ group of rotations of Δ^{n+1}.

$$S^n \times \left(\frac{SO(n+1)}{A_{n+2}} \right)$$
Lovász’ strongly self-dual polytopes

Lovász’ strongly self-dual polytopes

Theorem (Borsuk–Ulam)

For \(f: S^n \to \mathbb{R}^n \), there exists a point \(x \in S^n \) with \(f(x) = f(-x) \).

Figure credit: Jiří Matoušek, Using the Borsuk–Ulam theorem
Theorem (Borsuk–Ulam)

For \(f: S^n \to \mathbb{R}^n \), there exists a point \(x \in S^n \) with \(f(x) = f(-x) \).

Gromov’s “waist of sphere” theorem is for \(f: S^n \to \mathbb{R}^k \) with \(k \leq n \).

Figure credit: Benjamin Matschke, Journal of Topology & Analysis
Theorem (Borsuk–Ulam)

For \(f: S^n \to \mathbb{R}^n \), there exists a point \(x \in S^n \) with \(f(x) = f(-x) \).

Gromov’s “waist of sphere” theorem is for \(f: S^n \to \mathbb{R}^k \) with \(k \leq n \).

What about \(f: S^n \to \mathbb{R}^k \) with \(k \geq n \)?
Theorem (Borsuk–Ulam)

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with $f(x) = f(-x)$.

Theorem (A, Bush, Frick)

For $f: S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \ldots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.
Theorem (Borsuk–Ulam)

For \(f: S^n \to \mathbb{R}^n \), there exists a point \(x \in S^n \) with \(f(x) = f(-x) \).

Theorem (A, Bush, Frick)

For \(f: S^1 \to \mathbb{R}^{2k+1} \), there exists a set \(\{x_0, \ldots, x_{2k+1}\} \) of diameter at most \(\frac{k}{2k+1} \) such that \(\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i) \).
Theorem (Borsuk–Ulam)

For $f : S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with $f(x) = f(-x)$.

Theorem (A, Bush, Frick)

For $f : S^1 \to \mathbb{R}^{2k+1}$, there exists a set $\{x_0, \ldots, x_{2k+1}\}$ of diameter at most $\frac{k}{2k+1}$ such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof: $S^{2k+1} \cong VR^m(S^1; \frac{k}{2k+1}) \xrightarrow{f} \mathbb{R}^{2k+1}$

Sharpness: $f = (\cos \theta, \sin \theta, \cos 3\theta, \sin 3\theta, \cos 5\theta, \sin 5\theta, \ldots)$
Theorem (Borsuk–Ulam)

For $f: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with $f(x) = f(-x)$.

Theorem (A, Bush, Frick)

For $f: S^n \to \mathbb{R}^{n+2}$, there exists a set $\{x_0, \ldots, x_{n+2}\}$ of diameter at most r_c such that $\sum \lambda_i f(x_i) = \sum \lambda_i f(-x_i)$.

Proof: $S^{n+2} \subseteq \text{VR}^m(S^n; r_c) \xrightarrow{f} \mathbb{R}^{n+2}$
Open questions & future work

1. Čech and Nerve complexes (Borsuk)
2. Other manifolds M?
3. $\text{VR}_<(X; r) \simeq \text{VR}_<^m(X; r)$?
4. Morse, Morse–Bott, and Bestvina–Brady Morse theories.
Open questions & future work

1. Čech and Nerve complexes (Borsuk)
2. Other manifolds M?
3. $\text{VR}_<(X; r) \simeq \text{VR}^m_<(X; r)$?
4. Morse, Morse–Bott, and Bestvina–Brady Morse theories.
Open questions & future work

1. Čech and Nerve complexes (Borsuk)
2. Other manifolds M?
3. $\text{VR}_<(X; r) \simeq \text{VR}_{<}^m(X; r)$?
4. Morse, Morse–Bott, and Bestvina–Brady Morse theories.
References

Thank you!