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I am interested in applied and computational topology, and in particular, applications to
sensor networks and to data analysis.

1. The Evasion Problem in Mobile Sensor Networks

In sensor network problems one combines local measurements from individual sensors to
answer a global question, and topology can be useful for this passage from local to global.
For example, suppose that disk-shaped sensors wander in a simply-connected planar domain
D over time interval I = [0, 1]. The sensors don’t know their locations but do measure their
time-varying connectivity graph. Assume that immobile sensors cover the boundary ∂D and
that the network remains connected. Let X ⊂ D × I be the subset of spacetime covered by
sensors, and let Xc = (D × I) \ X be the uncovered region. Both X and Xc are fibrewise
spaces, that is, spaces equipped with projection maps X → I and Xc → I to time. An
evasion path is a section I → Xc of the projection map, and an evasion path exists precisely
when a moving evader can avoid being seen by the sensors.

Out[98]=

Cech simplicial complex

Appearance

draw one simplices

draw Cech complex

draw Rips complex

Filtration parameter

t 0.186

CechRips.nb  3

Printed by Mathematica for Students

Sensor network at fixed time.
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Connectivity graph.
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Simplicial complex model.

The Evasion Problem. The time-varying connectivity graph of a sensor network deter-
mines, to a close approximation, the fibrewise homotopy type of covered region X. Using
only this input, is it possible to determine if an evasion path exists?

De Silva and Ghrist prove the following theorem in [dSG06].

Theorem (de Silva, Ghrist). If there is an evasion path in the sensor network, then every
[α] ∈ H2(X, ∂D × I) satisfies 0 = [∂α] ∈ H1(∂D × I).

Their homological condition is necessary but not sufficient: the bottom network in Figure 1
satisfies the condition but contains no evasion path.

I discovered that the answer to the evasion problem is no: neither the fibrewise homotopy
type of covered region X nor any invariants thereof (such as zigzag persistence) determine
if an evasion path exists. The fibrewise embedding of X in D × I also matters. This
is demonstrated by the two networks in Figure 1. Their covered regions X are fibrewise
homotopic and their time-varying connectivity graphs are equivalent, but the top network
contains an evasion path while the bottom one does not.

What minimal sensing capabilities might we add to get necessary and sufficient conditions?
It is reasonable for real-world applications to assume that a sensor can measure the cyclic
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order of its neighbors [GLPS06], and local distances may be approximated by time-of-flight.
I prove the following result.

Theorem. If each sensor measures the cyclic order of its neighbors and the lengths of
its adjacent edges in the sensor network’s connectivity graph, then we can determine if an
evasion path exists.

The proof reconstructs a parameterized fat graph or ribbon graph, whose boundary cycles
track how the connected components of the uncovered region merge, split, appear, and
disappear. It is an open question if the local distance measurements are necessary.
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Figure 1. Each row is a sensor network, represented both as a covered region
X in spacetime D × I and by seven sequential connectivity graphs. The top
network contains an evasion path but the bottom one does not since the evader
cannot travel backwards in time.

2. The Space of Evasion Paths

Can we describe the space of evasion paths? That is, what information must we measure
about covered region X and its fibrewise embedding in spacetime D×I to describe the space
of sections I → Xc? This extension of the evasion problem from §1 is not as important for
applications to real-world sensor networks, but it is interesting from a theoretical point of
view. In this section I describe how to study the space of sections using a J. F. Adams
spectral sequence for diagrams of spaces.

The unstable Adams spectral sequence for a space Y has as its E2-term an unstable Ext
depending only on H∗(Y,Z/pZ) as a coalgebra over the Steenrod algebra [BK72b], and often
converges to π∗(Y ) modulo torsion prime to p. We study an analogous spectral sequence for
a zigzag diagram of spaces Y :

Y = Y1 → Y2 ← Y3 → . . .← Yn−1 → Yn.

In particular, pick Y to model uncovered region Xc → I. Under favorable circumstances the
spectral sequence for Y converges to information about the space of sections I → Xc.

We construct our Adams spectral sequence for diagrams as follows. The forgetful functor
that discards all maps in a zigzag diagram of spaces has a right adjoint, and this adjunction
defines a monad (or triple) T . Let Z be the monad that maps a based simplicial set Y to the
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Z/pZ–module generated by the simplices of Y [BK72b]. We combine monads T and Z to
get a monad on the category of zigzag diagrams of spaces, and our Adams spectral sequence
for diagrams is the homotopy spectral sequence of a cosimplicial object [BK72a] built from
this resulting monad. We identify the E2-term algebraically using a derived functor on the
category of diagrams of unstable coalgebras.

3. Morse Theory in Topological Data Analysis

Large sets of high-dimensional data are common in most branches of science and engi-
neering, and their shapes reflect important patterns within. Sometimes these shapes are
nonlinear and difficult to detect with traditional tools. The goal of topological data analysis
is to produce simple combinatorial descriptors for data sets with interesting shapes [Car09].
In [AAC] we introduce a method, inspired by Morse theory, for data sets that are genuinely
nonlinear and difficult to study with traditional tools. We adapt Morse theory to the setting
of point clouds, i.e. finite sets of points in Euclidean space, using a kernel density estimator
as the analogue of the Morse function. We sample cells from the skeleton of the Morse
complex with the nudged elastic band method from computational chemistry [JMJ98]. The
result is an increasing sequence of cell complexes modeling the dense regions of the data.
In accordance with the idea of topological persistence, this output gives a more accurate
representation of the data than the choice of any single complex. We test our approach
on a variety of data sets, including sets arising in social networks, image processing, and
microarray analysis, and find compact complexes that reveal important nonlinear patterns
and assist in our qualitative understanding of the data.
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