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I am interested in applied and computational topology, and in particular, applications to
sensor networks and to data analysis. I am applying for a postdoctoral fellowship at the
IMA Thematic Year on Scientific and Engineering Applications of Algebraic Topology for
the following reasons:

• My dissertation research is on the evasion problem for mobile sensor networks (§1) and
a theoretical extension of this problem which I study using the J. F. Adams spectral
sequence (§2). Gunnar Carlsson and Robert Ghrist have guided me in this work, and
the IMA Thematic year would be an ideal setting to tackle further questions (§4.1
and §4.2).
• I am also interested in topological data analysis. In §3 I discuss an approach, inspired

by Morse theory, to model the dense regions of a data set with an increasing sequence
of cell complexes.
• I believe I can contribute to the IMA Workshop on Topological Data Analysis. I

am a coauthor of a tutorial on javaPlex, a software package for persistent homology,
which may be of interest to the workshop attendees.
• In my research thus far I focus on sensor networks and data analysis, but I am also

interested in other applications of topology, and for this reason I organize Stanford’s
Computational Topology Reading Group. I would enjoy working in person with the
IMA Thematic Year participants on new (to me) flavors of applied topology, such as
dynamics, robotics, and statistical topology.

In §1-3 I describe my past research and in §4 I discuss avenues for future research.

1. The Evasion Problem

In sensor network problems one combines local measurements from individual sensors to
answer a global question, and topology can be useful for this passage from local to global.
For example, suppose that disk-shaped sensors wander in a simply-connected planar domain
D over time interval I = [0, 1]. The sensors don’t know their locations but do measure their
time-varying connectivity graph. We say that an evasion path exists if a moving evader can
avoid being detected by the sensors. Can we determine if an evasion path exists? This is
the evasion problem, introduced by de Silva and Ghrist in [dSG06].
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Simplicial complex model.

Assume that immobile sensors cover the boundary ∂D and that the network remains
connected. Let X ⊂ D × I be the subset of spacetime covered by sensors, and let Xc =
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(D × I) \ X be the uncovered region. Both X and Xc are fibrewise spaces, that is, spaces
equipped with projection maps X → I and Xc → I to time. An evasion path is a section
I → Xc of the projection map, and an evasion path exists precisely when a moving evader
can avoid being seen by the sensors.

The Evasion Problem. The time-varying connectivity graph of a sensor network deter-
mines, to a close approximation, the fibrewise homotopy type of covered region X. Using
only this input, is it possible to determine if an evasion path exists?

De Silva and Ghrist provide the following necessary homological condition for the existence
of an evasion path [dSG06].

Theorem (de Silva, Ghrist). If there is an evasion path in the sensor network, then every
[α] ∈ H2(X, ∂D × I) satisfies 0 = [∂α] ∈ H1(∂D × I).

This condition is necessary but not sufficient: the bottom network in Figure 2 satisfies the
condition but contains no evasion path.
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Figure 2. Each row is a sensor network, represented both as a covered region
X in spacetime D × I and by seven sequential connectivity graphs. The top
network contains an evasion path but the bottom one does not since the evader
cannot travel backwards in time.

I began working on the evasion problem with the goal of finding an if-and-only-if criterion
based on zigzag persistence, a generalization of persistent homology (the maps can go either
direction) and a special case of quiver theory [CdS10]. A zigzag diagram of spaces is

Y1 → Y2 ← Y3 → . . .← Yn−1 → Yn

with each Yi a space and each arrow a continuous map. One can think of zigzag persistence
as a homology functor that instead accepts a zigzag diagram of spaces as input. We can build
a zigzag diagram of spaces that models fibrewise space X → I, and in our setting zigzag
persistence describes how the first-dimensional homology of the region covered by sensors
changes with time. It is an invariant of the fibrewise homotopy type of X.

I discovered that the answer to the evasion problem is no: neither the fibrewise homotopy
type of covered region X nor any invariants thereof (such as zigzag persistence) determine
if an evasion path exists. The fibrewise embedding of X in D × I also matters. This
is demonstrated by the two networks in Figure 2. Their covered regions X are fibrewise
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homotopic and their time-varying connectivity graphs are equal, but the top network contains
an evasion path while the bottom one does not.

What minimal sensing capabilities might we add to get necessary and sufficient conditions?
It is reasonable for real-world applications to assume that a sensor can measure the cyclic
order of its neighbors [GLPS06], and local distances may be approximated by time-of-flight.
We prove the following result.

Theorem. If each sensor measures the cyclic order of its neighbors and the lengths of
its adjacent edges in the sensor network’s connectivity graph, then we can determine if an
evasion path exists.

The proof uses local distances to reconstruct the time-varying alpha simplicial complex, a
subcomplex of the Delaunay triangulation that is homotopy equivalent to the nerve of the
sensor disks. The cyclic order data gives the 1-skeleton of the alpha complex the structure
of a fat graph or ribbon graph, whose boundary cycles track how the connected components
of the uncovered region merge, split, appear, and disappear. It is an open question (§4.1) if
the local distance measurements are necessary.

2. The Space of Evasion Paths

The evasion problem from §1 motivates a natural extension: can we describe the entire
space of evasion paths? That is, what information must we measure about covered region X
and its fibrewise embedding in spacetime D × I to describe the space of sections I → Xc?
This extension is not as important for applications to real-world sensor networks, but it is
interesting from a theoretical point of view. In this section I describe how to study the
space of sections using a J. F. Adams spectral sequence for diagrams of spaces. In §4.2 on
future work I discuss the remaining step of obtaining the input to our spectral sequence (as
unstable invariants of uncovered region Xc) from embedding invariants of covered region X.

The unstable Adams spectral sequence for a space Y has as its E2-term an unstable Ext
depending only on H∗(Y,Z/pZ) as a coalgebra over the Steenrod algebra [BK72b], and often
converges to π∗(Y ) modulo torsion prime to p. We study an analogous spectral sequence for
a zigzag diagram of spaces Y :

Y = Y1 → Y2 ← Y3 → . . .← Yn−1 → Yn.

In particular, pick Y to model uncovered region Xc → I. Under favorable circumstances the
spectral sequence for Y converges to information about the space of sections I → Xc.

We construct our Adams spectral sequence for diagrams as follows. The forgetful functor
that discards all maps in a zigzag diagram of spaces has a right adjoint, and this adjunction
defines a monad (or triple) T . Let Z be the monad that maps a based simplicial set Y to the
Z/pZ–module generated by the simplices of Y [BK72b]. We combine monads T and Z to
get a monad on the category of zigzag diagrams of spaces, and our Adams spectral sequence
for diagrams is the homotopy spectral sequence of a cosimplicial object [BK72a] built from
this resulting monad. We identify the E2-term algebraically using a derived functor on the
category of diagrams of unstable coalgebras.
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3. Morse Theory in Topological Data Analysis

The analysis of high-dimensional data is a fundamental problem in many branches of
science and engineering. In [AAC] we introduce a method, inspired by Morse theory, for
data sets that are genuinely nonlinear and difficult to study with traditional tools. We adapt
Morse theory to the setting of point clouds, i.e. finite sets of points in Euclidean space, using
a kernel density estimator as the analogue of the Morse function. We sample cells from
the skeleton of the Morse complex with the nudged elastic band method from computational
chemistry [JMJ98]. The result is an increasing sequence of cell complexes modeling the dense
regions of the data. In accordance with the idea of topological persistence, this output gives
a more accurate representation of the data than the choice of any single complex.

We test our Morse-based approach on a variety of data sets, including sets arising in social
networks, image processing, and microarray analysis. We find compact complexes that reveal
important nonlinear patterns and assist in our qualitative understanding of the data, as in
Figure 3.

Figure 3. (Left) An image processing data set of 3×3 pixel patches, and our
cellular model containing four 0-cells and eight 1-cells. (Right) The model’s
interpretation. The most common non-constant 3 × 3 patches are linear gra-
dients at all angles and quadratic gradients in the preferred horizontal and
vertical directions.

4. Future Research

I enjoy not only applied problems in computational topology but also the theoretical
questions they motivate. Below I discuss three avenues for future research.

4.1. The Evasion Problem. At the end of §1 on the evasion problem I ask whether local
distances are necessary for our theorem. This question is rephrased below.

Open Question. The time-varying connectivity graph of a sensor network determines, up
to close approximation, the fibrewise homotopy type of covered region X. Using only this
input and the cyclic order of the edges about each sensor, is it possible to determine if an
evasion path exists?

An answer would fill the gap between the theorem of [dSG06], which is not sharp but
uses only minimal sensor capabilities, and our result, which is sharp but requires more
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advanced sensors that measure local distances. This question seems to depend only on
the computational geometry of planar disks, but it has proven challenging so far, and I
would enjoy sharing it with the participants of the IMA Workshop on Topological Systems:
Communication, Sensing, and Actuation.

4.2. The Space of Evasion Paths. In §2 I study the space of evasion paths with a spectral
sequence for diagrams that depends on unstable invariants of uncovered regionXc. It remains
to obtain these unstable invariants from embedding invariants of covered region X. One idea
is to use the tools of embedding calculus [Wei99] in a fibrewise setting. In particular, let
Emb(X,D× I) be the space of all fibrewise embeddings of X in spacetime D× I. Note that
a point in Emb(X

∐
I,D × I) encodes both the data of an embedding X ↪→ D × I and an

evasion path I → Xc. Hence I am interested in studying the fibre of the restriction map

Emb(X
∐

I,D × I)→ Emb(X,D × I).

4.3. Persistent Homology and Data Analysis. I am a coauthor of a tutorial on javaPlex,
a software package for persistent homology [TVJA11], and I also have experience with per-
sistent homology in data analysis, in particular range images [AC09]. As a result, I serve as
a contact person for users of javaPlex who have questions about how to use the software with
their data. I have received questions from scientists in a wide range of disciplines, including
mathematics, computer science, biology, medicine, neuroscience, chemical engineering, elec-
trical engineering, physics, and economics. I enjoy this role because it benefits my research
community and introduces me to potential future collaborators.

References

[AAC] H. Adams, A. Atanasov, and G. Carlsson. Morse theory in topological data analysis. Submitted
December 2011, arXiv:1112.1993.

[AC09] H. Adams and G. Carlsson. On the nonlinear statistics of range image patches. SIAM J. Imag.
Sci., 2:110–117, 2009.

[BK72a] A. K. Bousfield and D. M. Kan. Homotopy Limits, Completions and Localizations, volume 304 of
Lecture Notes in Mathematics. Springer, Berlin, 1972.

[BK72b] A. K. Bousfield and D. M. Kan. The homotopy spectral sequence of a space with coefficients in
a ring. Topology, 11:79–106, 1972.

[Car09] G. Carlsson. Topology and data. Bull. Amer. Math. Soc., 46:255–308, 2009.
[CdS10] G. Carlsson and V. de Silva. Zigzag persistence. Found. Comput. Math., 10:367–405, 2010.
[dSG06] V. de Silva and R. Ghrist. Coordinate-free coverage in sensor networks with controlled boundaries

via homology. Int. J. Robot. Res., 25:1205–1222, 2006.
[GLPS06] R. Ghrist, D. Lipsky, S. Poduri, and G. Sukhatme. Surrounding nodes in coordinate-free networks.

In In Workshop in Algorithmic Foundations of Robotics, 2006.
[JMJ98] H. Jónsson, G. Mills, and K. W. Jacobsen. Nudged elastic band method for finding minimum

energy paths of transitions. In B.J. Berne, G. Ciccotti, and D.F. Coker, editors, Classical and
Quantum Dynamics in Condensed Phase Systems, pages 385–404. World Scientific, Singapore,
1998.

[TVJA11] A. Tausz, M. Vejdemo-Johansson, and H. Adams. Javaplex: A research software package for
persistent (co)homology. Software available at http://code.google.com/javaplex, 2011.

[Wei99] M. Weiss. Embeddings from the point of view of immersion theory: Part I. Geometry and Topology,
3:67–101, 1999.

5

http://arxiv.org/abs/1112.1993
http://code.google.com/javaplex

	1. The Evasion Problem
	2. The Space of Evasion Paths
	3. Morse Theory in Topological Data Analysis
	4. Future Research
	4.1. The Evasion Problem
	4.2. The Space of Evasion Paths
	4.3. Persistent Homology and Data Analysis

	References

