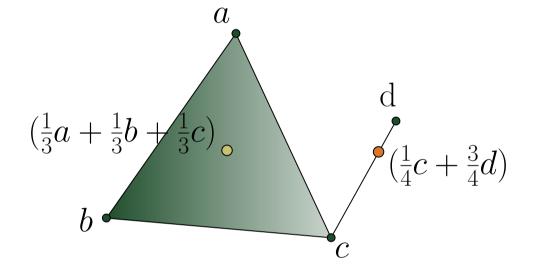
Motivation

Applied topology uses simplicial complexes to approximate a manifold based on data. This approximation is known not to always recover the homotopy type of the manifold. In this work-in-progress we investigate how to compute the homotopy type in such settings using techniques inspired by Morse theory.

Background

Points in simplices can be described with barycentric coordinates:



These can be interpreted as probability measures:

$$\sum_{i=0}^{n} \lambda_i x_i \iff \sum_{i=0}^{n} \lambda_i \delta_{x_i}$$

The set of finitely-supported probability measures on a metric space X admits a natural metric.

Definition: Let μ and ν be probability measures on X. Denote by $\Gamma(\mu,\nu)$ the set of all measures on $X \times X$ with marginals μ and ν . The *p*-Wasserstein distance is defined to be

$$d_W(\mu,\nu) = \inf_{\pi\in\Gamma} \left(\int d(x,y)^p \mathrm{d}\pi\right)^{1/p}.$$

Definition: A *metric simplicial complex* on X is a metric space (S, d_W) where S is a collection of finitely-supported probability measures on X which satisfies:

• For all $x \in X$, the point mass δ_x is in S, and **2** If $\mu \in S$ and $\nu \ll \mu$, then $\nu \in S$.

Main Example: The Vietoris–Rips metric complex, $VR^m(X; r)$, contains all finitely-supported measures, μ , such that the diameter of the support of μ is less than r.

 $VR^m_{<}$

We propose to answer the questions above using a form of Morse theory for metric simplicial complexes. In particular, [4] and [5] develop a form of differential geometry for Wasserstein spaces, which should be amenable to Morse theory.

Morse Theory for Wasserstein Spaces

Joshua Mirth (joint with Henry Adams)

Department of Mathematics, Colorado State University

Questions

Main Question: Given a known metric space (e.g. a compact Riemannian manifold), M, what is the homotopy type of $VR^m(M; r)$ for all values of r?

Question: How is $VR^m(X; r)$ related to the ordinary Vietoris–Rips simplicial complex, VR(X; r), with the simplicial complex topology? (Partial answer: if X is finite then $\operatorname{VR}^m(X; r) \cong \operatorname{VR}(X; r)$.)

Question: Given X and Y and some operation on metric spaces \star , how is $\operatorname{VR}^m(X \star Y; r)$ related to $\operatorname{VR}^m(X; r) \star \operatorname{VR}^m(Y; r)$?

Morse Theory

Classical Morse theory is based on two lemmas [6]. Given a smooth manifold, M, and a smooth function $F: M \to \mathbb{R}$ with no degenerate critical points, then

• If $[a, b] \subseteq \mathbb{R}$ contains no critical values of F, then

 $F^{-1}(-\infty, a] \simeq F^{-1}(-\infty, b]$, and

2 If a is an index-k critical point of F, then

 $F^{-1}(-\infty, a+\varepsilon] \simeq F^{-1}(-\infty, a-\varepsilon] \cup D^k$ where D^k is a k-cell.

What Can Happen at Higher Scales?

The homotopy type of the Vietoris–Rips complex of S^1 is known for all r [1], and the results are surprising:

$$\operatorname{VR}_{\leq}(S^{1};r) \simeq \begin{cases} S^{2\ell+1} & \frac{\ell}{2\ell+1} < r < \frac{\ell+1}{2\ell+3} \\ \bigvee^{\infty}S^{2\ell} & r = \frac{\ell}{2\ell+1} \end{cases}.$$

Conjecture:
$$\operatorname{VR}_{<}^{m}(S^{1};r) \simeq \operatorname{VR}_{<}(S^{1};r) \text{ for all } r, \text{ and} \\ \operatorname{VR}_{\leq}^{m}(S^{1};r) \simeq \operatorname{VR}_{\leq}(S^{1};r) \text{ except when } r = \frac{\ell}{2\ell+1}.$$

Theorem: For small r, $\operatorname{VR}^m(M; r) \simeq M$. *Proof sketch:* Appears in [2] and [3] for different types of M. **Theorem:** For any metric spaces X and Y, and any $r \in [0, +\infty]$, we have $\operatorname{VR}^m(X \times Y; r) \simeq \operatorname{VR}^m(X; r) \times \operatorname{VR}^m(Y; r)$ and $\operatorname{VR}^m(X \vee r)$ $Y; r) \simeq \operatorname{VR}^m(X; r) \lor \operatorname{VR}^m(Y; r).$ *Proof sketch:* For products, the homotopy equivalence is given by forming the product measure:

This has a homotopy inverse

 $\sum \lambda_i$

given by taking the marginals of a distribution.

Additional Known Results:

- For any convex
- For $0 \le r < 1/3$
- [1] Michał Adamaszek and Henry Adams. The vietoris-rips complexes of a circle.
- [3] Henry Adams and Joshua Mirth.
- 2008.
- American Mathematical Soc., 2010.
- [6] John Milnor. Morse Theory.

Preliminary Results

$$\sum_{i} \lambda_i \delta_{x_i}, \sum_{j} \lambda_j \delta_{y_j} \mapsto \sum_{i,j} \lambda_i \lambda_j \delta_{(x_i, y_j)}.$$

$$K \subseteq \mathbb{R}^d$$
, $\operatorname{VR}^m(K; r)$ is contractible for all r .
3, $\operatorname{VR}^m(S^1; r) \simeq S^1$, and $\operatorname{VR}^m(S^1; 1/3) \simeq S^3$.

• If X is a simply-connected space of non-positive curvature, then $\operatorname{VR}^{m}(X; r) \simeq X \text{ all } r \in [0, +\infty].$

References

Pacific Journal of Mathematics, 290(1):1–40, 2017. [2] Michał Adamaszek, Henry Adams, and Florian Frick. Metric reconstruction via optimal transport. SIAM Journal on Applied Algebra and Geometry, 2(4):597–619, 2018. Metric thickenings of euclidean submanifolds. Topology and its Applications, 254:69–84, 2019. [4] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures.

[5] Wilfrid Gangbo, Hwa Kil Kim, and Tommaso Pacini.

Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems.