Metric Thickening, Orbitopes, and Borsuk–Ulam Theorems

Henry Adams, Johnathan Bush, and Florian Frick

Department of Mathematics, Colorado State University

Department of Mathematical Sciences, Carnegie Mellon University

Summary

Metric thickenings of a metric space capture local geometric properties of the space. We use the combinatorial and geometric structure of convex bodies in Euclidean space to give geometric proofs of the homotopy type of certain metric thickenings of the circle. Consequently, we discover interconnections between the geometry of circle actions on Euclidean space, the structure of zeros of trigonometric polynomials, and theorems of Borsuk–Ulam type.

Definitions

- Fix a metric space (X, d). Given a simplicial complex K with vertex set X, the metric thickening of K is the metric space $K^m = ([K], d_W)$, where d_W denotes the 1-Wasserstein metric and $[K] = \left\{ \sum_{i=0}^{n} x_i \mid n \in \mathbb{N}, \lambda_i \geq 0, \sum_i \lambda_i = 1, \{x_0, \ldots, x_n\} \in K \right\}$ [1].
- Let $VR(X; r)$ and $CH(X; r)$ denote the Vietoris–Rips and Čech simplicial complexes of a metric space X at scale r, respectively. Let $VR^m(X; r)$ and $CH^m(X; r)$ denote the metric thickenings of these complexes.
- An orbitope is a convex hull of an orbit of a compact group acting linearly on a vector space [2].
- The Barvinok–Novik orbitope (see [3]) is $B_k = \text{conv}(SM_k(S^3))$, where $SM_k : S^1 \to \mathbb{R}^k$ by $SM_k(t) = (\cos(t), \sin(t), \cos(3t), \sin(3t), \ldots, \cos((2k-1)t), \sin((2k-1)t))$.

Main Theorem ([4])

Equip S^3 with the geodesic metric (of total circumference 1). Then,

$VR^m(S^3; r) \simeq S^{3k-1}$ if $r = \frac{1}{2k+1}$

Homotopy equivalences are $p \circ SM_k$ and ι in the following diagram:

$VR^m(S^3; r) \xymatrix@1{\ar[r]^{SM_k} & \mathbb{R}^k \ar[r]^{\iota} & \theta \ar[r]^{p} & VR^m(S^3; r)}$

Here, the domain of SM_k has been linearly extended to $VR^m(S^1; r)$, p denotes the radial projection, and ι denotes the inclusion $\iota : \mathbb{R}^k \to VR^m(S^3; r)$.

Intuition: Simplices contributing to the homotopy type of $VR^m(S^3; r)$ are contained in ∂B_1. Consequently, $p \circ SM_k$ reduces the dimension of $VR^m(S^3; r)$ while maintaining the correct topology. In fact, B_1 is simplicial, meaning its faces are simplices, and if $(SM_k(t_0), \ldots, SM_k(t_n))$ is a simplex in ∂B_1, then (t_0, \ldots, t_n) belongs to the 2-skeleton of $VR^m(S^3; r)$ [3].

Conjecture

 Equip S^3 with the geodesic metric (of total circumference 1). Then,

$VR^m(S^3; r) \simeq S^{3k-1}$ if $r = \frac{1}{2k+1}$

Desired proof (outline). For $\frac{1}{2k+1} \leq r < \frac{1}{2k+1}^+$, there exist homotopy equivalences $p \circ SM_k$ and ι in the following diagram:

$VR^m(S^3; r) \xymatrix@1{\ar[r]^{SM_k} & \mathbb{R}^k \setminus \{0\} \ar[r]^{\iota} & \theta \ar[r]^{p} & VR^m(S^3; r)}$

where p denotes the radial projection, ι denotes the inclusion, and $\partial B_1 \cong S^{3k-1}$.

- Continuity depends crucially on the topology of the metric thickening. In fact, $X \to [VR(X; r)]$ is not continuous if $VR(X; r)$ is not locally finite, whereas $X \to VR^m(X; r)$ is always continuous.
- Exact structure of ∂B_{2k} is unknown for $k > 2$, and showing $\iota \circ p \circ SM_k \simeq i_{VR^m(S^3; r)}$ is difficult for $r > \frac{1}{2}$.

Consequences

- Theorem. If $f : S^1 \to \mathbb{R}^{2k+1}$ is continuous, there exists a subset $\{x_1, \ldots, x_n\} \subseteq S^1$ of diameter at most $\frac{2k+1}{r}$ and with $m \leq 2k+1$ such that $\sum_{i=0}^{m} \lambda_i f(x_i) = \sum_{i=0}^{m} \lambda_i f(-x_i)$, for some choice of convex coefficients λ_i [4]. This result is sharp.

- Theorem. Let r_n denote the diameter of an inscribed regular $(n + 1)$-simplex in S^n. If $f : S^n \to \mathbb{R}^{n+2}$ is continuous, there is a subset $\{x_1, \ldots, x_n\} \subseteq S^n$ of diameter at most r_n such that $\sum_{i=0}^{n} \lambda_i f(x_i) = \sum_{i=0}^{n} \lambda_i f(-x_i)$, for some choice of convex coefficients λ_i [4].

Theorem. Given a subset $X \subseteq S^1$ of diameter less than $\frac{1}{2k+1}$, there exists a raked homogeneous trigonometric polynomial of degree $2k - 1$ that is positive on all of the points in X [4]. This result is sharp.

Future Work

- If the orbitopes B_{2k} are simplicial for all k, it would follow that the $(2k - 1)$-dimensional homology, cohomology, and homotopy groups of $VR^m(S^3; r)$ are nontrivial for $\frac{1}{2k+1} \leq r < \frac{1}{2k+1}^+$.

References

Email: johnathan.bush@colostate.edu
Web: https://www.math.colostate.edu/~bush

1Department of Mathematics, Colorado State University
2Department of Mathematical Sciences, Carnegie Mellon University