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ABSTRACT. Let [X, λ] be a principally polarized abelian variety over a finite field with commutative
endomorphism ring; further suppose that either X is ordinary or the field is prime. Motivated by an
equidistribution heuristic, we introduce a factor νv([X, λ]) for each place v of Q, and show that the
product of these factors essentially computes the size of the isogeny class of [X, λ].

The derivation of this mass formula depends on a formula of Kottwitz and on analysis of mea-
sures on the group of symplectic similitudes, and in particular does not rely on a calculation of class
numbers.

1. INTRODUCTION

Let [X, λ] ∈ Ag(Fq) be a principally polarized g-dimensional abelian variety over the finite field
Fq = Fpe . Its isogeny class I([X, λ], Fq) is finite; our goal is to understand the (weighted by
automorphism group) cardinality #̃I([X, λ], Fq).

A random matrix heuristic might suggest the following. Let fX/Fq(T) be the characteristic poly-
nomial of Frobenius of X. It is well-known that fX/Fq(T) ∈ Z[T]. Following Gekeler [Gek03], for
a rational prime ` - p disc( f ), one can define a number

(1.1) ν`([X, λ], Fq) = lim
n→∞

#{γ ∈ GSp2g(Z`/`n) : charpolyγ(T) = fX/Fq(T) mod `n}
# GSp2g(Z`/`n)/(`− 1)`n−1`gn .

For ` - p disc( f ), in which case the conjugacy class is determined by the characteristic polynomial
(cf. Lemma 3.1), we interpret ν`[X, λ] as the deviation of the size of the conjugacy class with
characteristic polynomial fX/Fq(T) from the average size of a conjugacy class in GSp(Z`).

For ` | disc( fX/Fq(T)), since the characteristic polynomial need not determine a unique conjugacy
class in GSp2g(Z`), a slightly more involved definition of ν`[X, λ] is needed, see (4.1). Similarly,
we define quantities νp([X, λ], Fq) and ν∞([X, λ], Fq) using, respectively, equidistribution consid-
erations for σ-conjugacy classes in GSp2g(Qq) and the Sato-Tate measure on the compact form
USp2g.

Careless optimism might lead one to hope that #̃I([X, λ], Fq) is given by the product of the average
archimedean and p-adic masses with the local deviations:

(1.2) #̃I([X, λ], Fq) ∝ ν∞([X, λ], Fq)∏
`

ν`([X, λ], Fq).

This argument is (at best) superficially plausible. Nonetheless, in this paper we give a pure-
thought proof of the following theorem:

Theorem A. Let [X, λ] be a principally polarized abelian variety over Fq with commutative endomorphism
ring. Suppose that either X is ordinary or that Fq = Fp is the prime field. Then

(1.3) #̃I([X, λ], Fq) = q
dim(Ag)

2 τTν∞([X, λ], Fq)∏
`

ν`([X, λ], Fq).
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Here dim(Ag) = g(g+1)
2 and τT is the Tamagawa number of the algebraic torus associated with [X, λ]

(defined below).

As we have mentioned, this formulation is inspired by [Gek03], in which Gekeler proves Theorem
A for an ordinary elliptic curve E over a finite prime field Fp. (In the case g = 1 considered by
Gekeler, τT equals 1.) Roughly speaking, the strategy there is to compute the terms ν` explicitly,
and show that the right-hand side of (1.3) actually computes, via Euler products, the value at
s = 1 of a suitable L-function. One concludes via the analytic class number formula and the
known description of the isogeny class I(E, Fq) as a torsor under the class group of the quadratic
imaginary order attached to the Frobenius of E. This strategy was redeployed in [AW15] and
[GW19] for certain ordinary abelian varieties.

More recently, in [AG17], the first- and last-named authors showed directly that the right-hand
side of (1.3) actually computes the product of the volume of a certain (adelic) quotient and an
orbital integral on GL2. Thanks to the work of Langlands [Lan73], and Dirichlet’s class number
formula, one has a direct proof that this product computes the size of the isogeny class of the
elliptic curve.

In fact, this formula of Langlands, originally developed to count points on modular curves over
finite fields, has been generalized by Kottwitz to an essentially arbitrary Shimura variety of PEL
type [Kot92]. Kottwitz’s formula (see Proposition 2.1 below), as in the case of Langlands, comes
as a product of an (adelic) volume of a torus and an orbital integral, this time over GSp2g. Let us
remark that although the orbital integral in Kottwitz’s and Langlands’ formulas clearly decom-
poses as a product of local terms, the volume term, however, appears as a global quantity (a class
number in the case of GL2, cf. Lemma A.4 of [AG17]). Therefore an Euler product expression for
#̃I([X, λ], Fq) such as the one in (1.3) is, at least, not immediate.

The content of the present paper is to prove that the Euler product given by the right-hand side
of (1.3) is indeed equal to the product of the global volume and the orbital integral given by
Kottwitz’s formula. We establish this by incorporating the works of Shyr [Shy77] and by a delicate
analysis of the interplay between various measures on the relevant spaces.

This paper is the logical extension of [AG17], which worked out these details for the case where
the governing group is GSp2 = GL2. The reader will correctly expect that the structure of the
argument is largely similar. However, the cohomological and combinatorial intricacies of sym-
plectic similitude groups in comparison to general linear groups – in particular, the tori are much
more complex and conjugacy and stable conjugacy need not coincide – mean that each stage is
considerably more involved.

We highlight three particular issues that make the generalization from elliptic curves to higher
rank not straight-forward.

The first is already mentioned above – the difference between conjugacy and stable conjugacy in
GSp2g when g > 1. This issue is discussed in detail in Section 3, and leads to the definition 4.1,
which (as we prove in Section 3) coincides with (1.1) when ` - p disc( f ).

The second is the fundamental lemma for base change, which is used to relate a Gekeler-style ratio
at p to the twisted orbital integral. The complicated function one generally gets as a result of base
change is the reason we have to assume that X is ordinary if q 6= p; this is discussed in detail in
4.3.

The last is that the tori in GSp2g for g ≥ 2 are significantly more complicated than those for g = 1.
We handle the problems caused by the complexity of the tori using the work of Shyr [Shy77],
which is the content of Section 5. Let us also remark that the global calculation in Section 5 involves
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the Tamagawa number of the algebraic torus T. This number is well-known to be 1 for g = 1, but
for general g we have to leave it as an (unknown) constant; Thomas Rüd and (independently)
Wen-Wei Li obtained suggestive partial results and kindly agreed to present them in Appendix A.

Finally, we remark that (1.3), perhaps not surprisingly, can also be interpreted as a Smith-Minkowski-
Siegel type mass formula (in the sense of Tamagawa-Weil) with explicit local masses (cf. [GY00]).
Here the underlying group, of course, is GSp2g and the masses calculate sizes of the relevant
isogeny classes. Although this point of view is interesting in its own right we do not pursue it
further in this paper. We would, however, like to note that the appearance of Tamagawa numbers
is natural in this context.
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Notation. We work over a finite field Fq = Fpe of characteristic p. We will often drop the field
from all notation.

Fix a positive integer g. Let V = Z⊕2g, endowed with basis x1, · · · , xg, y1, · · · yg, and equip it
with the symplectic form such that 〈xi, yj〉 = δij and 〈xi, xj〉 = 〈yi, yj〉 = 0. Let G be the group
of similitudes G = GSp(V, 〈·, ·〉)∼=GSp2g; it has dimension 2g2 + g + 1 and rank r = g + 1. Its
derived group is Gder∼= Sp2g, and G/Gder∼=Gm. Let η : G → Gm be the corresponding surjection
(the multiplier map). We write Tspl for the split torus of diagonal matrices in G.

If K is a field, α ∈ G(K), and Γ ⊆ G(K), we let Γα = {β−1αβ : β ∈ Γ} be the orbit of α under Γ.

For an element γ ∈ G(Q`), where ` is an arbitrary prime, and G is a split reductive algebraic group,
the Weyl discriminant of γ is denoted by D(γ): D(γ) = ∏α∈Φ(1− α(γ)), where the product is
over all roots of G (see §6.1.1 for details).

2. BACKGROUND

2.1. The Kottwitz formula. The key formula we need is developed by Kottwitz in [Kot92]. In
fact, the special case we need is detailed in [Kot90, Sec. 12]. By way of establishing necessary
notation, we review the relevant part of this work here.

Let Ag denote the moduli space of principally polarized abelian varieties of dimension g. An
isogeny between two principally polarized abelian varieties [X, λ], [Y, µ] ∈ Ag(Fq) is an isogeny
φ : X → Y such that mφ∗µ = n · λ for some nonzero integers m and n. The isogeny class
I([X, λ], Fq) is the set of all principally polarized abelian varieties [Y, µ]/Fq admitting such an
isogeny (over Fq), and its weighted cardinality is

#̃I([X, λ], Fq) = ∑
[Y,µ]∈I([X,λ],Fq)

1
# Aut(Y, µ)

.
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The abelian variety X/Fq admits a Frobenius endomorphism FrX/Fq , with characteristic polyno-
mial fX/Fq(T) of degree 2g. (By [Tat66], this polynomial determines the isogeny class of X as an
unpolarized abelian variety.)

For each ` 6= p, H1(XFq
, Z`) (the dual of the Tate module) is a free Z`-module of rank 2g, en-

dowed with a symplectic pairing 〈·, ·〉λ induced by the polarization. The Frobenius endomor-
phism vX/Fq induces an element γX/Fq,` ∈ GSp(H1(XFq

, Z`), 〈·, ·〉λ), and thus an element of
G(Z`), well-defined up to conjugacy. Moreover, there is an equality of characteristic polynomials
fγX/Fq ,`(T) = fX/Fq(T). Simultaneously considering all finite primes ` 6= p, we obtain an adelic
similitude γ[X,λ] ∈ G(A

p
f ). (Alternatively one can, of course, directly consider the action of vX/Fq

on H1(XFq
, Ẑp) = lim ←

p-n
H1(XFq

, Z/n).)

Similarly, the crystalline cohomology group H1
cris(X, Qq) is endowed with an integral structure

H1
cris(X, Zq) and a σ-linear endomorphism F (where we denote by Qq the degree e unramified

extension of Qp, and by Zq its ring of integers). It determines, up to σ-conjugacy, an element δX/Fq

of G(Qq) with multiplier η(δX/Fq) = p.

The eth iterate of F is linear, and in fact Fe is the endomorphism of H1
cris(X, Qq) induced by vX/Fq .

Let T[X,λ]/Q represent the automorphism group of [X, λ] in the category of abelian varieties up
to Q-isogeny. Concretely, the polarization λ induces a (Rosati) involution (†) on End(X)⊗Q; for
each Q-algebra R, we have

T[X,λ](R) = {α ∈ (End(X)⊗ R)× : αα(†) ∈ R×}.

By Tate’s theorem [Tat66], for ` 6= p, T[X,λ](Q`)∼=GγX/Fq ,`(Q`), the centralizer of γX/Fq,`, and
T[X,λ](Qq)∼=GδX/Fq σ(Qp), the twisted centralizer of δX/Fq in G(Qq).

A direct analysis of the effect of isogenies on the first cohomology groups of abelian varieties then
shows:

Proposition 2.1 ([Kot90]). The weighted cardinality of the isogeny class of [X, λ] ∈ Ag(Fq) is

#̃I([X, λ], Fq) = vol(T[X,λ](Q)\T[X,λ](A f )) ·
∫

GγX/Fq
(A

p
f )\G(A

p
f )

1G(Ẑ
p
f )
(g−1γX/Fq g) dg

·
∫

GδX/Fq σ(Qp)\G(Qq)
1G(Zq)diag(p,··· ,p,1,··· ,1)G(Zq)(h

−1δX/Fq hσ) dh.
(2.1)

In the orbital and twisted orbital integrals in (2.1), we choose the Haar measures on G which
assign volume 1 to G(Ẑp) and to G(Zq), respectively. The choice of measure on T does not matter
here (as long as the same measure is used to calculate the global volume). We define the specific
measure on T that we use below, in §5. It coincides with the canonical measure at all but finitely
many places.

This formula appears in [Kot90, p.205]; see also [Kot92] for its generalization to a much larger
class of PEL Shimura varieties. As in [AG17, 2.4], the weighted cardinality accounts for the fact
that we have not introduced a rigidifying level structure, and thus our objects admit nontrivial,
albeit finite, automorphism groups.
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Remark 2.2. Using Honda–Tate theory, one can ([Kot90, p.206], [Kot92, p.422]) find γX/Fq,0 ∈ G(Q),
well-defined up to G(Q)-conjugacy, such that γX/Fq,0 and γX/Fq,` are conjugate in G(Q`). Simi-
larly, γX/Fq,0 and N δX/Fq are conjugate in G(Qq), where N denotes the norm map

G(Qq) // G(Qp)

α � // αασ · · · ασe−1
.

(The characteristic polynomial of γX/Fq,0 is fX/Fq(T).) Then the group variety T[X,λ]/Fq is isomor-
phic to the centralizer of γX/Fq,0 in G.

It turns out that moreover, one can find a rational element γ0 ∈ G(Q) such that γ0 is G(Q`)-
conjugate to γX/Fq,` for every ` 6= p (see [Kis17, p.889]). Consequently, in (2.1) we could replace
γX/Fq with a global object γ0; but we will never use this fact in this paper.

In the remainder of this paper we fix a principally polarized abelian variety [X, λ]/Fq with com-
mutative endomorphism ring End(X). (For example, any simple, ordinary abelian variety neces-
sarily has a commutative endomorphism ring [Wat69, Thm. 7.2].) By Tate’s theorem, the commu-
tativity of End(X) is equivalent to the condition that T[X,λ] is a maximal torus in G.

To ease notation slightly, we will write δ0 and T for δX/Fq and T[X,λ], respectively. If ` is a fixed,
notationally suppressed prime, we will sometimes write γ0 for γX/Fq,`; by Remark 2.2, one may
equally well let γ0 be the image of some choice γ0 in G(Q) (though we will not be using it).

2.2. Structure of the centralizer. For future use, we record some information about the centralizer
T = T[X,λ]. Recall that X is a g-dimensional abelian variety with commutative endomorphism ring.
Then T is a maximal torus in G, and K := End(X)0 = End(X)⊗Q is a CM-algebra of degree 2g
over Q. Then K is isomorphic to a direct sum K∼=⊕t

i=1 Ki of CM fields, and the Rosati involution on
End(X) induces a positive involution a 7→ a on K, which in turn restricts to complex conjugation
on each component Ki. Let K+ ⊂ K be the subalgebra fixed by the positive involution. Then
K+∼=⊕t

i=1 K+
i , where K+

i is the maximal totally real subfield of Ki, and [K+ : Q] = g.

In general, if L is a field and M/L is a finite étale algebra, let RM/L be Weil’s restriction of scalars
functor. The norm map NM/L induces a map of tori RM/LGm → Gm, and the norm one torus is the
kernel of this map:

1 // R(1)
M/LGm // RM/LGm

NM/L
//// Gm // 1.

With these preparations we have

Tder := T ∩ Gder∼=RK+/QR(1)
K/K+Gm,

and T sits in the diagram

(2.2) 1 // Tder

∼
��

// T� _

��

// Gm� _

��

// 1

1 // RK+/QR(1)
K/K+Gm // RK/QGm

RK+/Q NK/K+
// RK+/QGm // 1.
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On points, we have

T(Q) = {a ∈ K× : aa ∈ Q×}
= {(a1, · · · , at) ∈ ⊕K×i : ∃c ∈ Q× : aiai = c}

Tder(Q) = {a ∈ K× : aa = 1}
= {(a1, · · · , at) ∈ ⊕K×i : aiai = 1}.

Let T̃ = Tder ×Gm. In the sequel, it will be useful to have an explicit isogeny α : T̃ → T, as well as
a complementary isogeny β : T → T̃ such that α ◦ β is the squaring map. On points, these maps
are given by

T
β

// T̃ α // T

a � // (aa−1, aa)

(b, c) � // bc.

2.3. The Steinberg quotient. Recall that we have fixed a maximal split torus Tspl in G; let W be
the Weyl group of G relative to Tspl. Let Tder

spl = Tspl ∩Gder, and let Ader = Tder
spl /W be the Steinberg

quotient for the semisimple group Gder. It is isomorphic to the affine space of dimension r− 1 = g.

We let AG = Ader ×Gm be the analogue of the Steinberg quotient for the reductive group G, and
define a map

(2.3) G c // AG

γ � // (tr(γ), tr(∧2γ), · · · , tr(∧gγ), η(γ)).

Note that η(γ) = tr(∧g+1(γ))/ tr(γ); and if γ ∈ Gder ⊂ G, then c(γ) = (cder(γ), 1), where cder is
the usual Steinberg map.

2.4. Truncations. Let ` be any finite prime (including ` = p). Let πn = π`,n : Z` → Z`/`n be the
truncation map. For any Z`-scheme X , we denote by πXn the corresponding map

πXn : X (Z`) // X (Z`/`n)

induced by πn. Given Sn ⊂ X (Z`/`n), we will often set

S̃n = π−1
n (Sn).

The projection maps πG
n extend to a somewhat larger set of similitudes. Let M(Z`) be the set of

symplectic similitudes which stabilize the lattice V ⊗Z`;

M(Z`) = GSp(V ⊗Q`) ∩ End(V ⊗Z`)∼=GSp2g(Q`) ∩Mat2g(Z`).

Inside this set, for each d ≥ 0 we identify a subset

M(Z`)d = {A ∈ M(Z`) : ord` det(A) ≤ d}.

Finally, let us denote by M(Z`/`n)d the set

M(Z`/`n)d = {A ∈ M(Z`/`n) : ord` det(A) ≤ d}.
Note that M(Z`)0 = G(Z`), and in the last definition, the condition on the determinant is not
vacuous even if d� n, because it rules out the matrices of determinant zero.
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With a certain amount of abuse, we introduce the following notion of “M(Z`)d-conjugacy”:

Definition 2.3. If γ ∈ M(Z`), and in particular if γ ∈ G(Z`), we will write γ ∼M(Z`)d
γ0 if there exists

some A ∈ M(Z`)d such that Aγ = γ0A.

Similarly, if γ ∈ M(Z`/`n), we write γ ∼M(Z`/`n)d
γ0 if there exists some A ∈ M(Z`/`n)d such that

Aγ = πn(γ0)A.

When n is small relative to d, truncations of M(Z`)d- conjugate elements might not be M(Z`/`n)d-
conjugate (since, e.g., all the elements A ∈ M(Z`) satisfying Aγ = γ0A might project to 0
mod `n). Of course, this does not happen when n� d. We also note that trivially, if γ ∼M(Z`)d0

γ0

for some d0, then γ ∼M(Z`)d
γ0 for all d ≥ d0. The analogous statement holds for γ ∈ G(Z`/`n) as

long as n� d.

2.5. Measures and integrals. As in [AG17], we need to explicitly work out the relationships be-
tween several different natural measures on the `-adic points of varieties, especially groups and
group orbits. The definitions introduced in [AG17, §3] (where a little more historical perspective
is briefly reviewed) go through with minimal changes. We recall the relevant notation here.

Serre-Oesterlé measure: In [Ser81, §3], Serre observed that for a smooth p-adic submanifold
Y of Zm

p of dimension d, there is a limit limn→∞ |Yn|p−nd, where Yn is the reduction of Y
modulo pn (in our notation, Yn = πn(Y)). Moreover, Serre pointed out that this limit can
be understood as the volume of Y with respect to a certain measure, which is canonical. The
definition of this measure for more general sets Y was elaborated on by Oesterlé [Oes82]
and by Veys [Vey92]. We refer to this measure as the Serre-Oesterlé measure, and denote it
by µSO.

Measures on groups: Once and for all, we fix the measure |dx|` on the affine line A1
Q`

to be
the translation-invariant measure such that vol|dx|`(Z`) = 1. Then there are two funda-
mentally different approaches to defining measure. The first is, for any smooth algebraic
variety X over Q` with a non-vanishing top degree differential form ω on it, one gets
the associated measure |dω|` on X (Q`). In particular, for a reductive group G, there is a
canonical differential form ωG, defined in the greatest generality by Gross [Gro97]. This
gives a canonical measure |dωG|` on G(Q`). When G is split over Q, this measure has
an alternative description using point-counting over the finite field (i.e., it coincides with
Serre-Oesterlé measure µSO

G defined above):

(2.4)
∫

G(Z`)
|dωG|` =

#G(Z/`)
`dim(G)

.

This observation is originally due to A. Weil [Wei82], and is actually built into his definition
of integration on adeles. Weil’s classical observation is precisely what makes this paper
possible.

For groups, there is a second approach. Start with a Haar measure and normalize it so
that some given maximal subgroup has volume 1. The choice of a “canonical” compact
subgroup in this approach could lead to very interesting considerations (and is one of the
main points of [Gro97]), but in our situation only two easy cases are needed. For G(Q`), the
relevant maximal subgroup is G(Z`), and for T[X,λ](Q`), it is the unique maximal compact
subgroup (discussed below in §5.1). We denote such a Haar measure on G(Q`) by µcan

G ,
and on T(Q`) by νT, following [Shy77].
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Geometric measure on orbits: This is a measure constructed in [FLN10] on a fiber of the
Steinberg map c : G → AG. Let ωG be a volume form on G, and let ωA be the volume form∧

dxi ∧ dx
|x| on AG

∼=Arank(G)−1 ×Gm. On the fiber c−1(c(γ)), factor ωG as

ωG = ω
geom
c(γ)
∧ωA;

integrating
∣∣∣ωgeom

c(γ)

∣∣∣ defines a measure µgeom on c−1(c(γ)).

Suppose φ is a locally constant compactly supported function on G(Q`). Recall the family γX/Fq,`
(and δ0), whose centralizers are the sets of Q`-points of the algebraic torus T := T[X,λ]. We use
two different measures on the orbit G(Q`)γX/Fq,`

∼=T[X,λ](Q`)\G(Q`) to define an integral. When

` is fixed, we will often denote the element γX/Fq,` by γ0; we let µ
Shyr
γ0 be the quotient measure

µcan
G /νT, and let µ

geom
γ0 be the geometric measure reviewed above. (Since the orbit of γ0 is an open

subset of c−1(c(γ0)), the restriction of the geometric measure from c−1(c(γ0)) to the orbit makes
sense.) Then for • ∈ {Shyr, can, geom}, set

O•γ0
:=
∫

T(Q`)\G(Q`)
φ(g−1γ0g)d µ•γ0

.

3. CONJUGACY

3.1. Integral conjugacy. To relate the right-hand side of (2.1) to the ratios ν` of (1.1), we interpret
the orbital integral as the volume of the intersection of the G(Q`)-orbit of γ0 with G(Z`). For
almost all `, G(Z`) ∩G(Q`) γ0 =G(Z`) γ0:

Lemma 3.1. Suppose γ0 ∈ G(Z`) and ` - D(γ0). If γ ∈ G(Z`), then

γ ∼G(Q`) γ0 ⇐⇒ γ ∼G(Z`) γ0.

Proof. The hypothesis on γ0 implies that the centralizer Gγ0 is a smooth torus over Z`, and thus
the transporter from Gγ to Gγ0 is smooth over Z` (e.g., [Con14, Prop. 2.1.2]).

Since γ and γ0 are conjugate in G(Q`), they have the same characteristic polynomial, and thus
their reductions γ0 = πG

1 (γ0) and γ = πG
1 (γ) are stably conjugate in G(Z`/`). By Lang’s theo-

rem, γ0 and γ are conjugate in G(Z`/`); by smoothness of the transporter scheme, γ and γ0 are
conjugate in G(Z`). �

If γ0 is not regular, then the set G(Z`)∩G(Q`) γ0 generally consists of several different G(Z`)-orbits.
Nonetheless, the number of distinct orbits is bounded; and membership in G(Q`)γ0 can be detected
at a finite truncation level.

Lemma 3.2. Suppose γ0 ∈ G(Z`) is regular semisimple. There exists an integer e = e(γ0) such that, if
n� 0 and d > e, then for γ ∈ G(Z`/`n), the following conditions are equivalent:

(1) γ ∼M(Z`/`n)d
γ0 mod `n, and

(2) there exists some γ̃ ∈ G(Z`) such that γ̃ mod `n = γ and γ̃ ∼G(Q`) γ0.

The statement is also true with G(Z`) replaced with M(Z`) everywhere.



COUNTING ABELIAN VARIETIES OVER FINITE FIELDS VIA FROBENIUS DENSITIES 9

Proof. We prove the original statement.

The intersection of G(Z`) with the G(Q`)-orbit of γ0 is a finite union of G(Z`)-orbits, since it is
compact (recall that γ0 is regular semisimple) and the G(Z`)-orbits are open in this intersection;
let g1, ..., gs be representatives of these orbits, and let Ai ∈ G(Q`) be elements satisfying Aigi A−1

i =
γ0, so that Aigi = γ0Ai. We clear denominators; for each i, let Xi ∈ M(Z`) be a scalar multiple of
Ai. Then Xigi = γ0Xi, and we set

e(γ0) = max
i∈{1,..,s}

{|ord(det Xi)|}.

Now, suppose n > 2d(γ0), where d(γ0) is the valuation of the discriminant of γ0, e ≥ e(γ0), and
n� e. We want to prove that with these assumptions, an element γ ∈ G(Z`/`n) satisfies

γ ∼M(Z`/`n)e πn(γ0)

if and only if there exists a lift γ̃ ∈ G(Z`) such that πn(γ̃) = γ and γ̃ ∼G(Q`) γ0.

One direction is easy: suppose there exists γ̃ ∈ G(Z`) such that γ̃ mod `n = γ and γ̃ ∼G(Q`) γ0.
Then there exists i ∈ {1, . . . , s} such that γ̃ ∼G(Z`) gi. Therefore there exists Y ∈ G(Z`) such
that Yγ̃ = giY. Recall that as above, there exists Xi ∈ M(Z`) such that Xigi = γ0Xi. Then
Z := πM

n (XiY) lies in M(Z`/`n)e and satisfies the condition Zγ = πn(γ0)Z.

The other direction is a special case of Hensel’s Lemma. Since Hensel’s Lemma in this generality,
though well-known, is surprisingly hard to find in the literature, we provide a detailed explana-
tion with references.

For each n, let

Rγ0(Z`/`n) = {(A, γ) : A ∈ M(Z`/`n), γ ∈ G(Z`/`n), Aγ = πG
n (γ0)A} ⊂ M(Z`/`n)×G(Z`/`n),

where πG
n is the projection from §2.4. This is a system of (2g)2 equations in 8g2 variables (namely,

the matrix entries of A and γ). Now Hensel’s Lemma as stated in [Bou85, III.4.5., Corollaire 3,
p.271] applies directly, as follows. Let n(γ0) be the valuation of the minor formed by the first
(2g)2 columns of the Jacobian matrix of this system of equations at γ0. By Hensel’s lemma, if
n > 2n(γ0) and (A, γ) ∈ Rγ0(Z`/`n), then there exists some γ̃ ∈ G(Z`) such that πn(γ̃) = γ and
γ̃ ∼M(Z`) γ0.

Since the core argument simply relies on the solvability, via Hensel’s lemma, of a system of equa-
tions over Z`, it is also valid if G(Z`) is replaced by M(Z`). �

Remark 3.3. We observe (though we do not need this observation in this paper) that n(γ0) in fact
equals the valuation of the discriminant of γ0, e.g. by the argument provided in [Kot05, §7.2].

For γ0 ∈ G(Z`), let

(3.1) C(d,n)(γ0) = {γ ∈ G(Z`/`n) : γ ∼M(Z`/`n)d
γ0}.

If d = 0, this coincides with the usual conjugacy class of πn(γ0). As in Section 2.4, let C̃(d,n)(γ0) =

(πG
n )
−1(C(d,n)(γ0)) be the set of lifts of elements of C(d,n)(γ0) to G(Z`).

We also extend this notation to elements γ0 ∈ M(Z`):

C(d,n)(γ0) = {γ ∈ M(Z`/`n) : γ ∼M(Z`/`n)d
γ0}.

(If γ0 ∈ G(Z`) ⊂ M(Z`), the two notions coincide and thus there is no ambiguity.)
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Corollary 3.4. (a) Suppose γ0 ∈ G(Z`). There exists d = d(γ0) such that, if n� 0, then

C(d,n)(γ0) = πn(G(Z`) ∩G(Q`) γ0).

Moreover,

G(Z`) ∩G(Q`) γ0 =
⋂

n≥0

C̃(d,n)(γ0).

(b) Suppose γ0 ∈ M(Z`). There exists d = d(γ0) such that, if n� 0, then

C(d,n)(γ0) = πn(M(Z`) ∩G(Q`) γ0).

Moreover,

M(Z`) ∩G(Q`) γ0 =
⋂

n≥0

C̃(d,n)(γ0).

Proof. This is a direct consequence of Lemma 3.2. �

3.2. Stable (twisted) conjugacy. In this section, we further assume that [X, λ] is a principally-
polarized abelian variety with commutative endomorphism ring for which 1/2 is not a slope of the
Newton polygon of X. (Again, any ordinary simple principally polarized abelian variety satisfies
these hypotheses.)

Recall the definition of K and K+, as well as the discussion of T, from Section 2.2. By a prime of K
(or K+) lying over p we mean a prime p of some Ki (respectively, K+

i ) lying over p, and we write
Kp for Ki,p. With this convention, we then have K⊗Qp∼=⊕ Kp.

Lemma 3.5. Let p+ be a prime of K+ lying over p. Then p+ splits in K.

Proof. This is standard. We work in the category of p-divisible groups up to isogeny. Then X[p∞]
has height 2g, and comes equipped with an action by K⊗Q Qp.

Corresponding to the decomposition K+ ⊗Q Qp∼=⊕p+|p K+
p+ we have the decomposition

X[p∞] = ⊕X[p+∞].

Moreover, X[p+∞] is a p-divisible group of height 2[K+
p+ : Qp], and self-dual (because p+OK is

stable under the Rosati involution). We now fix one p+, and show that it must split in K.

Since K+
p+ is a field (and not just a Qp-algebra) of dimension 1

2 ht(X[p+∞]), X[p+∞] has at most two
slopes. Since by hypothesis 1/2 is not a slope of X, X[p+∞] has exactly two slopes, say λ = a/b
and 1 − a/b, where gcd(a, b) = 1. Let m be the multiplicity of λ as a slope of X[p+∞]; then
mb = [K+

p+ : Qp]. The endomorphism algebra of X[p+∞] (again, in the category of p-divisible
groups up to isogeny) is isomorphic to

End(X[p+∞])0∼=Matm(Dλ)⊕Matm(D1−λ),

where Dλ is the central simple Qp-algebra with Brauer invariant λ. In particular, any subfield L
of End(X[p+∞])0 satisfies [L : Qp] ≤ mb = [K+

p+ : Qp]. Since K ⊗K+ K+
p+ acts on X[p+∞], we must

have K⊗K+ K+
p+
∼=K+

p+ ⊕ K+
p+ , as claimed. �

Corollary 3.6. We have

Tder
Qp
∼=⊕p+ RK+

p+
/Qp

Gm.
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Proof. Since Tder = RK+/QR(1)
K/K+Gm, using Lemma 3.5 we find

Tder
Qp

= RK+⊗Qp/Qp R(1)
K⊗Qp/K+⊗Qp

Gm

= ∼=⊕p+|p RK+
p+

/Qp
R(1)

K⊗K+K+
p+

/K+
p+

Gm.

If L is any field then RL⊕L/LGm∼=Gm,L ⊕Gm,L; the norm map RL⊕L/LGm → Gm is given by multi-
plication of components; and so R(1)

L⊕L/LGm is isomorphic to Gm,L, where the latter is embedded in
the former via (id, inv). �

Recall that we have chosen δ0 ∈ G(Qq) (well-defined up to σ-conjuacy) and γ0 = N δ0 ∈ G(Qp).

Lemma 3.7. The stable conjugacy class of γ0 consists of a single conjugacy class, and the stable σ-conjugacy
class of δ0 consists of a single σ-conjugacy class.

Proof. To prove the first claim, it suffices (by [Kot82, p.788]) to show that H1(Qp, T) vanishes. By
taking the long exact sequence of cohomology of the top row of (2.2), and then invoking Hilbert
90 and Corollary 3.6, we find that H1(Qp, T) does in fact vanish.

For the second claim, it similarly suffices to show that the first cohomology of the twisted cen-
tralizer Gδ0,σ vanishes [Kot82, p.805]. However, the twisted centralizer of an element is always
an inner form of the (usual) centralizer of its norm [Kot82, Lemma 5.8]. In our case, the cen-
tralizer T = Gγ0 is a torus, and thus admits no nontrivial inner forms. We conclude again that
H1(Qp, Gδ0,σ) is trivial. �

4. RATIOS

4.1. Definitions. For ` 6= p, we define a local ratio ν`([X, λ]) designed to measure the extent to
which the conjugacy class of γX0/Fq , as an element of G(Z`/`), is more or less prevalent than a
randomly chosen conjugacy class. More precisely, to measure this probability, we consider the
finite group G(Z`/`n) for sufficiently large n, and recall that our notion of “conjugacy” in this
group is not the usual conjugacy but the relation ∼M(Z`/`n)e defined above in §2.4. For ` = p, the
element γX0/Fq is not in G(Zp), and we use M(Zp) instead; but this has no effect on the definition
since our notion of “conjugacy” in G(Zp/pn) already uses M(Zp).

Recall the definition of C(d,n)(γ0) from (3.1), and that Cn(γ0) := C(0,n)(γ0) is the actual conjugacy
class of πn(γ0) in G(Z`/`n).

Definition 4.1. For each finite place `, including ` = p, using the shorthand γ0 := γX/Fq,` ∈ M(Z`),
set

(4.1) ν`([X, λ]) = ν`([X, λ], Fq) = lim
d→∞

lim
n→∞

#C(d,n)(γ0)

#G(Z`/`n)/#AG(Z`/`n)
.

At infinity, define

(4.2) ν∞([X, λ]) = ν∞([X, λ], Fq) =
|D(γ0)|1/2

∞
(2π)g

where |·|∞ is the usual real absolute value.

Remark 4.2. So far we have avoided using the fact that there exists a rational element γ0 ∈ G(Q) as
in Remark 2.2, and treated γ0 as an element of G(A f ). We can continue doing so, and then for (4.2)

simply define the archimedean absolute vaue of its discriminant by |D(γ0)|∞ := ∏`

∣∣∣D(γX/Fq,`)
∣∣∣−1

`
.
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The ratios stabilize for large enough d and n, and thus the limits are not, strictly speaking, neces-
sary. In fact, for ` 6= 2, p and not dividing the discriminant of γ0, the ratios stabilize right away, at
d = 0 and n = 1, as the next two lemmas show.

Lemma 4.3. If ` - D(γ0) and n� 0, then C(d,n)(γ0) = Cn(γ0).

Proof. Recall that all our notation assumes that ` is fixed. Clearly Cn(γ0) ⊆ C(d,n)(γ0). Conversely,
suppose n is sufficiently large as in Lemma 3.2 and that γ ∈ C(d,n)(γ0). Then there exists some
γ̃ ∈ π−1

n (γ) such that γ̃ ∼G(Q`) γ0. By Lemma 3.1, γ̃ ∼G(Z`) γ0, and so γ ∼G(Z`/`n) γ0. �

Lemma 4.4. If ` - D(γ0), ` 6= 2, and d�γ0 0, then for n ≥ 1,

(4.3)
#C(d,n)(γ0)

#G(Z`/`n)/#AG(Z`/`n)
=

#{γ ∈ G(Z`/`) : γ ∼ γ0}
#G(Z`/`)/#AG(Z`/`)

.

Proof. By Lemma 4.3, the left-hand side of (4.3) is

#G(Z`/`n)/#Gγ0(Z`/`n)

#G(Z`/`n)/#AG(Z`/`n)
=

#AG(Z`/`n)

#Gγ0(Z`/`n)
.

Since π1(γ0) is regular, the centralizer Gγ0 is smooth over Z` of relative dimension g + 1. Since
the same is true of the scheme AG/Z`, the result now follows. �

4.2. From ratios to integrals. Fix a prime ` (possibly ` = p or ` = 2). (In this subsection, as
above, all quantities depend on this notationally suppressed prime.) Recall (2.3) the canonical
map c : G → A from G to its Steinberg quotient. The fibres of this map over regular points are
stable orbits of regular semisimple elements. Define a system of neighbourhoods of c(γ0) inside
AG(Z`) by

Ũn(γ0) =
˜

πAG
n (c(γ0)) = (πAG

n )−1(πAG
n (c(γ0))).

In other words,

Ũn(γ0) = {a = (a1, . . . ag, η) ∈ AG(Z`) | ai ≡ ai(γ0) mod `n, η ≡ η(γ0) mod `n}.

These definitions and (3.1) are summarized by the diagram

(4.4) C̃(d,n)(γ0) ⊂ M(Z`)

πM
n
��

c // AG(Z`) ⊃ Ũn(γ0)

π
AG
n
��

C(d,n)(γ0) ⊂ M(Z`/`n)
cn // AG(Z/`n) 3 πAG

n (c(γ0)),

where cn : G(Z/`n) → AG(Z/`n) is the map sending an element to the coefficients of its char-
acteristic polynomial mod `n. The diagram of maps commutes since reduction mod `n is a ring
homomorphism, and the map c is polynomial in the matrix entries of γ. (The diagram of subsets
need not commute, though.) We also note that when ` 6= p, the sets C̃(d,n)(γ0) and C(d,n)(γ0) are
contained in G(Z`) and G(Z`/`n), respectively, since ord`(det(γ0)) = 0 in this case, and this is
also true for all elements that are congruent to any conjugate of γ0.

By definition of the geometric measure, for any open subset B ⊂ G(Z`) we have

(4.5) volµgeom(B ∩ c−1(c(γ0))) = lim
n→∞

vol|dωG |(c
−1(Ũn(γ0)) ∩ B)

vol|dωA|(Ũn(γ0))
.
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Recall that each stable orbit c−1(c(γ)) is a finite disjoint union of rational orbits. Each rational
orbit being an open subset of the stable orbit, we may and do define geometric measure on each
rational orbit, by restriction.

In simple terms, the sets Ũn form a system of neighbourhoods of the point c(γ0) ∈ AG; the set
C̃(d,n)(γ0) can be thought of as the intersection of a neighbourhood of the orbit of γ0 with G(Z`);
the set c−1(c(γ0)) is the stable orbit of γ0. The following lemma gives the precise relationships
between all these sets.

Lemma 4.5. (a) Let ` 6= p. For large enough d and n (depending on γ0), we have

(4.6) c−1(Ũn(γ0)) ∩ G(Z`) =
⋃

γ′∼G(Q`)
γ0

C̃d,n(γ
′),

where γ′ runs over a set of representatives of G(Q`)-conjugacy classes in the stable conjugacy class
of γ0 whose Q`-orbits intersect G(Z`), so that we may take the elements γ′ to lie in G(Z`).

(b) When n is sufficiently large (depending on γ0), the sets C̃d,n(γ
′) above are disjoint.

(c) Let µSO
G be the Serre-Oesterlé measure on G(Qp) ∩ M(Zp), viewed as a submanifold of M(Zp).

Then volµSO
G
(C̃d,n(γ0)) = `−n dim(G)#Cd,n(γ0); in particular, if ` 6= p, vol|dωG |(C̃d,n(γ0)) =

`−n dim(G)#Cd,n(γ0).

Proof. (a). This is an easy consequence of the fact that two regular semisimple elements of G(Q`)
are stably conjugate if and only if their characteristic polynomials coincide. In our notation,

c−1(c(γ0)) = tγ′∼G(Q`)
γ0(

G(Q`)γ′),

where G(Q`)γ′ denotes the rational conjugacy class of γ′ in G(Q`) as before. Now, we will describe
both the left-hand side and the right-hand side of (4.6) as: the set of elements γ ∈ G(Z`) whose
characteristic polynomial is congruent to that of γ0 mod `n. Indeed, on the left-hand side, by def-
inition, γ ∈ c−1(Ũn(γ0)) ∩ G(Z`) if and only if πAG

n (c(γ)) = πAG
n (c(γ0)). By the commutativity

of (4.4), this is equivalent to cn(πG
n (γ)) = cn(πG

n (γ0)), i.e., the characteristic polynomials of γ and
γ0 are congruent mod`n. On the right-hand side, given γ′ ∈ G(Z`), by Lemma 3.2, for d and
n large enough 1, we have that γ ∈ C̃(d,n)(γ

′) if and only if there exists γ′′ ∈ G(Z`) such that
γ′′ ≡ γ′ mod `n and γ′′ is G(Q`)-conjugate to γ. Taking the union of these sets as γ′ runs over the
set of integral representatives of G(Q`)-conjugacy classes in the stable class of γ0, we obtain the
set of all elements γ ∈ G(Z`) that are congruent modulo `n to an element of G(Z`) that is stably
conjugate to γ0, i.e., to an element having the same characteristic polynomial as γ0. This means
that cn(πG

n (γ)) = cn(πG
n (γ0)), which completes the proof of the first statement.

(b). Since the orbits of regular semisimple elements are closed in the `-adic topology, distinct
orbits have disjoint neighbourhoods.

(c). The map πM
n : C̃(d,n)(γ0) → C(d,n)(γ0) is surjective, so C̃(d,n)(γ0) can be thought of as a

disjoint union of fibres of πM
n . Since M is a smooth scheme over Z`, each fibre of πM

n has volume
`−n dim(G) with respect to the measure µSO (cf. [Ser81]). The first statement follows. Moreover,
as discussed above in §2.5, on G(Z`), the measures µSO and µ|ωG | coincide. For ` 6= p, we have
C̃(d,n)(γ0) ⊂ G(Z`), which completes the proof. �

Recall that φ0 is the characteristic function of G(Z`).

1Large enough depends on γ′, but only through its discriminant. Since stably conjugate elements have the same
discriminant, ultimately this only depends on γ0.
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Corollary 4.6. Let ` 6= p. Then there exists d(γ0) such that for d ≥ d(γ0)

Ogeom
γ0 (φ0) = lim

n→∞

vol|dωG |(C̃(d,n)(γ0))

vol|dωA|(Ũn(γ0))
.

Proof. The orbital integral, by definition, calculates the volume of the set of integral points in the
rational orbit of γ0, with respect to the geometric measure on the orbit. Using Lemma 4.5(a)-(b) we
write c−1(Ũn(γ0)) ∩ G(Z`) = tγ′ C̃d,n(γ

′), where γ′ are as in that lemma, with γ0 being one of the
elements γ′. The union on the right-hand side of (4.6) is a disjoint union of neighbourhoods of the
individual orbits, intersected with G(Z`). The statement follows from the equality (4.5), applied
to the set B := C̃d,n(γ0). �

Corollary 4.7. For ` 6= p, the Gekeler ratio (4.1) is related to the geometric orbital integral by

ν`([X, λ]) =
`dim(Gder)

#Gder(Z`/`)
Ogeom

γ0 (φ0).

Proof. Note that at a finite level n (and for d large enough so that the equalities in all the previous
lemmas hold), the denominator in (4.1) is

#G(Z`/`n)

#AG(Z`/`n)
=

#Gder(Z`/`n)#Gm(Z/`n)

`(rank(G)−1)n#Gm(Z/`n)
=

#Gder(Z`/`n)

`(rank(G)−1)n
=

`(dim(G)−1)(n−1)#Gder(Z`/`)
`(rank(G)−1)n

.

By Lemma 4.5(c), we have vol|dωG |(C̃d,n(γ0)) = #Cd,n(γ0)/`n dim(G), and by definition of the mea-
sure on the Steinberg quotient, vol|dωA|(Ũn(γ0)) = `−n rank(G) (here we are using the fact that
|η(γX,`)| = 1 for ` 6= p, so the absolute value of the Gm-coordinate is 1 on Ũn).

Then for a given level n, we have

#C(d,n)(γ0)

#G(Z`/`n)/#AG(Z`/`n)
=

`n dim(G) vol|dωG |(C̃(d,n)(γ0))`(rank(G)−1)n

`(dim(G)−1)(n−1)#Gder(Z`/`)

=
`dim(G)−1

#Gder(Z`/`)
vol|dωG |(C̃(d,n)(γ0))

vol|dωA|(Ũn(γ0))
.

The result now follows from Corollary 4.6. �

4.3. Calculation at p. Recall that we have fixed a maximal split torus Tspl ⊂ G. For any cochar-
acter λ ∈ X∗(Tspl) (and any power q = pe of p), let ψλ = ψλ,q be the characteristic function of the
double coset

Dλ,q = G(Zq)λ(p)G(Zq).

By the Cartan decomposition, the collection of all ψλ is a basis forHG = HG,Qq , the Hecke algebra
of functions on G(Qq) which are bi-G(Zq)-invariant.

Let µ0 be the cocharacter p 7→ diag(p, · · · , p, 1, · · · , 1); it is the cocharacter associated to the
Shimura variety Ag. Define

ψq,p = ψµ0,q = 1G(Zq)diag(p,··· ,p,1,··· ,1)G(Zq)

φq,p = ψeµ0,p = 1G(Zp)diag(q,··· ,q,1,··· ,1)G(Zp).

Recall that δ0 = δX/Fq represents the absolute Frobenius of X, and that γ0 = N δ0.
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Lemma 4.8. Let [X, λ]/Fq be a principally polarized abelian variety. Suppose that either X is ordinary or
that q = p (and thus e = 1). Then

G(Qp)γ0 ∩M(Zp) ⊆ Deµ0,p.

Proof. We identify X∗(Tspl) with

(4.7) {a = (a1, · · · , a2g) ∈ Z2g : ai + ag+i = aj + ag+j for 1 ≤ i, j ≤ g}.

Suppose γ ∈ Da,p ⊆ G(Qp). Then ordp(η(γ)) is the common value of ai + ag+i; and γ stabilizes
V ⊗Zp – that is, γ ∈ M(Zp) – if and only if each ai ≥ 0.

Let f (a) = #{i : ai = 0}. If α ∈ Da ∩M(Zp), then f (a) is the rank of π1(α) as an endomorphism
of V/pV.

With these preparations, suppose γ ∈G(Qp) γ0 ∩M(Zp). Note that we have ai + ag+i = e.

First, suppose X is ordinary. Then exactly g eigenvalues of γ are p-adic units. Consequently, if
γ ∈ Da, then f (a) = g. The only a as in (4.7) compatible with the symmetry and integrality
constraints is (e, · · · , e, 0, · · · , 0).

Second, suppose X has arbitrary Newton polygon but that e = 1. Again, the only a such that
ai + ag+i = e = 1 and each ai ≥ 0 is (1, · · · , 1, 0, · · · , 0). �

Lemma 4.9. Suppose that [X, λ]/Fq is an ordinary, simple, principally polarized abelian variety. Then

TOδ0(ψq,p) = Oγ0(φq,p).

Proof. There is a base change map b = bG,Qq/Qp : HG,Qq → HG,Qp . The fundamental lemma asserts
that, if ψ ∈ HG,Qq , then stable twisted orbital integrals for ψ match with stable orbital integrals for
bψ. For our δ0 and γ0, the adjective stable is redundant (Lemma 3.7), the case of the fundamental
lemma we need is [Clo90, Thm. 1.1], and we have

(4.8) TOδ0(ψq,p) = Oγ0(bψq,p).

While we will stop short of computing bψq,p, we will find a function which agrees with it on the
orbit G(Qp)γ0.

The Satake transformation is an algebra homomorphism S : HG,Qq → HTspl,Qq which maps HG,Qq

isomorphically onto the subringHW
Tspl,Qq

of invariants under the Weyl group. It is compatible with
base change, in the sense that there is a commutative diagram

HG,Qq
S //

b
��

HTspl,Qq
∼=C[X∗(Tspl)]

b
��

HG,Qp
S // HTspl,Qp

We exploit the following data about the Satake transform and the base change map.

Under the canonical identification of X∗(Tspl) and X∗(T̂spl), the character group of the dual torus,
λ ∈ X∗(Tspl) gives rise to a character of T̂spl, and thus a representation Vλ of Ĝ; let χλ be its trace.
We have

S(ψµ,q) = q〈µ,ρ〉χµ + ∑
λ<µ

a(µ, λ)χλ

for certain numbers a(µ, λ), where as usual ρ is the half-sum of positive roots [Gro98, (3.9)].



16 JEFFREY D. ACHTER, S. ALI ALTUĞ, LUIS GARCIA, AND JULIA GORDON

On one hand, following Gross [Gro98, (3.15)] and Kottwitz [Kot84b, (2.1.3)], we observe that the
weight µ0 = (1, . . . 1, 0, . . . , 0) is miniscule, and therefore

S(ψµ0,q) = q〈µ0,ρ〉χµ0 .

If we think of elements of C[X∗(Tspl)]
W as polynomials in 2g variables z1, . . . , z2g, then (essentially

by definition of the highest weight and the fact that the multiplicity of the highest weight in an
irreducible representation is 1 – in our case the representation in question is in fact the oscilla-
tor representation [Gro98, (3.15)]) we find that the leading term of S(ψµ0,q) is q〈µ0,ρ〉z1 . . . zg. By
definition, the base change map takes f ∈ C[z1, . . . , z2g, z−1

1 , . . . , z−1
2g ]

W to f (ze
1, . . . , ze

2g). Then

b(S(ψq,p)) = q〈µ0,ρ〉ze
1 . . . ze

g + ∑
λ<eµ0

a(eµ0, λ)χλ.

On the other hand, we have

S(φq,p) = p〈eµ0,ρ〉χeµ0 + ∑
λ<eµ0

b(eµ0, λ)χλ

= q〈µ0,ρ〉ze
1 . . . ze

g + ∑
λ<eµ0

c(eµ0, λ)χλ.

In these formulas, a(eµ0, λ), b(eµ0, λ) and c(eµ0, λ) are coefficients of lower weight monomials
that are ultimately irrelevant to our calculation. In particular,

φq,p −S−1(b(S(ψq,p)))

vanishes on Deµ0,p = G(Zp)eµ0(p)G(Zp).

The last point to note is that the intersection of the support of this difference φq,p−S−1(b(S(ψq,p)))
with the orbit of γ0 is contained in M(Zp). Once we have shown this, the desired result follows
from the fundamental lemma (4.8) combined with Lemma 4.8. We start by observing that since the
multiplier is a multiplicative map, it is constant on double G(Zp)-cosets. Therefore, for any double
coset Da,p such that Da,p ∩ G(Qp)γ0 6= ∅, we have ai + ag+i = e. Now suppose λ↔ a is a dominant
weight satisfying this condition and further satisfying λ ≤ eµ0. Then we have a1 ≥ a2 ≥ · · · ≥ ag
and ag ≥ 0 because λ is dominant; and on the other hand, e− a1 ≥ e− a2 ≥ · · · ≥ e− ag, and
e− ag ≥ 0 because of the condition λ ≤ eµ0. Therefore in particular, ag+1, . . . , a2g are non-negative,
and thus Dλ,p ⊂ M(Zp) (and in fact, we have also shown that a1 = · · · = ag). �

Lemma 4.10. Suppose that either X is ordinary or that q = p. Then there exists d(γ0) such that

Ogeom
γ0 (φq,p) = lim

n→∞

vol|dωG |(C̃d(γ0),n(γ0))

vol|dωA|(Ũn(γ0))
.

Proof. Suppose that X is ordinary (but q is an arbitrary power of p). By Lemma 3.7, c−1(c(γ0))
is a single G(Qp)-conjugacy class; the same argument shows this is true for elements in a small

neighbourhood of c(γ0). Thus, using (4.5), Ogeom
γ0 (φq,p) equals limn→∞

vol|dωG |(c
−1(Ũn(γ0))∩Deµ0,p)

vol|dωA|(Ũn(γ0))
. By

Lemma 4.8, we have
c−1(Ũn(γ0)) ∩ Deµ0,p = c−1(Ũn(γ0)) ∩M(Zp).

Therefore, all we need to show is that for large enough d and n, we have

(4.9) c−1(Ũn(γ0)) ∩M(Zp) = C̃d,n(γ0);

but this is essentially Corollary 3.4(b).

The case where q = p follows from Lemma 4.6 and the second case of Lemma 4.8. �
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Lemma 4.11. On the double coset Deµ0,p we have

(4.10) |dωG| = q
g(g+1)

2 +1µSO.

Proof. Let K = G(Zp). First, observe that the measure µSO on G(Qp) ∩ M(Zp) is both left- and
right- K-invariant (since multiplication by an element of G(Zp) yields a bijection on modpn-
points). Consider the decomposition of Deµ0,p into, say, left K-cosets: Deµ0,p = ts

i=1giK (the number
s of these cosets was computed by Iwahori and Matsumoto but is not needed here). It follows from
left K-invariance of µSO that µSO(giK) is the same for all i.

Second, the measure |dωG| is normalized so that each K-coset has volume #G(Fp). Thus, in order
to compare the measures µSO and |dωG|, we need to compare the cardinality #πn(giK) of the
reduction mod pn of any such coset giK that is contained in Deµ0,p with #G(Fp), for sufficiently
large n. (Note that n = 1 is insufficient, because for all such cosets the reduction modp of any
matrix in gK would be of lower rank. One needs to go to n > e for the ratios #πn(gK)

pn dim(G) to stabilize.)

Since the answer does not depend on gi, we can take g0 = eµ0(p) = diag(q, . . . , q, 1 . . . , 1). In other
words, we need to compute the cardinality of the fibre of the map

ϕq : G(Z/pn) // M(Z/pn)[
A B
C D

] � //

[
qA qB
C D

]
.

For simplicity, we would like to move the calculation to the Lie algebra. Let n� e. Observe that if
ϕq(γ1) = ϕq(γ2) for γ1, γ2 ∈ G(Z/pn), then

[
qIg 0
0 Ig

]
(γ1γ−1

2 − I) = 0, where Ig is the g× g-identity

matrix, and I is the identity matrix in M2g. This implies, in particular, that γ1γ−1
2 ≡ I mod pn−e.

Then we can write the truncated exponential approximation: γ1γ−1
2 = I + X + 1

2 X2 + . . . for some
X ∈ g(Zp); in particular, there exists X ∈ g(Zp) such that γ1γ−1

2 ≡ I + X mod p2(n−e), and
thus the kernel of the map ϕq is in bijection with the set of (X mod pn) for X ∈ g(Zp) such that[

qIg 0
0 Ig

]
X ≡ 0 mod pn.

We have g = sp2g ⊕ z, where z is the 1-dimensional Lie algebra of the centre. It will be convenient
to decompose it further: let h be the Cartan subalgebra of sp2g consisting of diagonal matrices, and
let V consist of matrices whose diagonal entries are all zero; then

g = (z⊕ h)⊕V.

Consider the action of multiplication by
[

qIg 0
0 Ig

]
on each term of this direct sum decomposition.

On the term z⊕ h it acts by diag(a1, . . . , a2g) 7→ diag(qa1, . . . , qag, ag+1, . . . , a2g), which in the z⊕ h-
coordinates can be written as (recalling that ai + ag+i = z is independent of i):

z
2
⊕
( z

2
− ag+1, . . .

z
2
− a2g,− z

2
+ ag+1, · · · − z

2
+ a2g

)
7→ qz

2
⊕
(

qz
2
−

(q + 1)ag+1

2
, . . .

qz
2
−

(q + 1)a2g

2
,−qz

2
+

(q + 1)ag+1

2
, · · · − qz

2
+

(q + 1)a2g

2

)
.

The only points (z, ag+1, . . . , a2g) that are killed (mod pn) by this map are of the form (z′, 0, . . . , 0)
with qz′ = 0; so there are q of them.

Next consider an element X =
[

A B
C D

]
∈ V. Then A is determined by D, and B is skew-symmetric

(up to a permutation of rows and columns). Multiplication by
[

qIg 0
0 Ig

]
scales each entry of A and

B by a factor of q, and does not change C and D. Since A is determined by D, the elements X
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killed by this map are in bijection with symmetric matrices B with entries in Z/pn that are killed
by multiplication by q. Since the space of such matrices is a g(g + 1)/2-dimensional linear space,
the number of such matrices B is qg(g+1)/2.

Thus, we have computed that |dωG| = q
g(g+1)

2 +1µSO on the double coset Deµ0,p. Combining this
with (4.11), we get:

νp([X, λ]) =
qpdim(Gder)

#Gder(Zp/p)
q−

g(g+1)
2 −1 vol|dωG |(C̃d,n(γ0))

vol|dωA|(Ũn(γ0))
= q−

g(g+1)
2

pdim(Gder)

#Gder(Zp/p)
Ogeom

γ0 (φq,p),

which completes the proof. �

Corollary 4.12. Suppose that either X is ordinary or that q = p. For ` = p, the Gekeler ratio (4.1) is
related to the geometric orbital integral by

νp([X, λ]) = q−
g(g+1)

2
pdim(Gder)

#Gder(Zp/p)
Ogeom

γ0 (φq,p).

Proof. First observe that vol|dωA|(Ũn(γ0)) = qp−n rank(G), since we are using the invariant measure
on the Gm-factor of AG = Arank(G)−1×Gm, and for γ0 (and therefore, for all points in Ũn), that co-
ordinate is the multiplier, with absolute value q−1. Thus, by Lemma 4.5 (c) and the same argument
as in Corollary 4.7, we have that for d > d(γ0),

(4.11) νp([X, λ]) = lim
n→∞

#Cd,n(γ0)

#G(Z/pnZ)/#AG(Z/pnZ)
=

qpdim(G)−1

#Gder(Z/pZ)
lim
n→∞

volµSO(C̃d,n(γ0))

vol|dωA|(Ũn(γ0))
.

The ratio inside the limit on the right-hand side is the same as the ratio in Lemma 4.10, except
that the measure in the numerator is the Serre-Oesterlé measure µSO rather than the measure
|dωG|. (Both measures are defined on G(Qp) ∩M(Zp).) Thus, to prove the corollary, we just need
to compute the conversion factor between the restrictions of the measures µSO and |dωG| to the
support of φq,p, which is the content of Lemma 4.11. �

5. THE PRODUCT FORMULA

Now that the relationship between the ratios ν` and orbital integrals (with respect to the geometric
measure) is established, we can translate the formula of Langlands and Kottwitz (2.1) into a Siegel-
style product formula for the ratios, thus obtaining our main theorem. Recall the notation of
§2, in particular, the element γ[X,λ] ∈ G(A f ) associated with the isogeny class of [X, λ], and its
centralizer T = T[X,λ]. Here in order to ease the notation we drop all the subscripts [X, λ]. Note
that there is some flexibility in the choice of the measures in the Langlands and Kottwitz formula,
but the measures need to be normalized by normalizing the measures on G(Q`) and on T(Q`)
separately, and both need to assign volume 1 to the maximal compact subgroups at almost all
primes. We will use the canonical measure dµcan

G on G(Q`) for every prime `, and the measure νT
(defined in detail below) on T(Q`) for all `. Since Gekeler-style ratios are expressed in terms of the
geometric measure on orbits, we need to calculate the conversion factor between the geometric
measure and the quotient dµcan

G /dνT. We prove (the definitions of the relevant invariants, such as
the Tamagawa number, are reviewed below):
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Theorem 5.1. Let γ = γ(X,λ) ∈ GSp2g(A f ), and let T be the centralizer of γ, as above. Let Tder =

T ∩ Gder = T ∩ Sp2g. Let τT denote the Tamagawa number of the torus T. Then

(5.1) volνT (T(Q)\T(A f ))∏
`

dµ
Shyr
` = |η(γ)|−

g(g+1)
4

∞
|D(γ)|1/2

∞ τT

(2π)g ∏
`

(
# Sp2g(Z/`Z)

`dim(Sp2g)

)−1

dµ
geom
` ,

where µ
Shyr
` is the quotient measure on the orbit of γ obtained as a quotient of the canonical measure on

G by the measure that we denote by νT on T, which gives volume 1 to the maximal compact subgroup of
T(Q`) at each place.

(Here we recall the convention that as we are thinking of γ as an element of G(A f ), we denote
by |D(γ)|∞ (respectively, |η(γ)|∞) the inverse of the product of the corresponding `-adic absolute
values.)

Once this theorem is proved, our main theorem follows easily. The proof of Theorem 5.1 will
occupy almost all of this section.

Remark 5.2. The factor appearing on the right-hand side of (5.1) has a nice expression in terms of
zeta-values:

# Sp2g(Z/`Z)

`dim(Sp2g)
=

g

∏
i=1

ζ−1
` (2i).

See Appendix A for a discussion of the Tamagawa number τT.

We start by reviewing the formula due to J.-M. Shyr, and the relevant definitions and notation.

5.1. Shyr’s formula. Shyr’s formula is a generalization of the analytic class number formula to
algebraic tori. We will be applying it to Tder in the notation above, so we will especially pay
attention to the case of a torus anisotropic at the archimedean prime.

Theorem 5.3. ([Shy77, Theorem 1]) For S an algebraic torus defined over Q,

(5.2) hS · RS = ρS · wS · τS · |DS|1/2.

Here we review the definitions of invariants involved in Shyr’s result.

5.1.1. Points of tori. Following Shyr, we introduce the following (abstract) groups attached to the
torus S.

The character group of S is the free Z-module X∗(S) = Ŝ (we emphasize that this is the lattice of
the characters defined over Q). Apart from using X∗(S) for the module denoted Ŝ by Shyr, in this
section we follow Shyr’s notation even though it differs from the notation in modern use, since we
need to quote his results in fine detail. In particular, if F is any field containing Q, we let (Ŝ)F be
the subgroup of characters of S which are defined over F. If v is any place of Q, let (Ŝ)v = (Ŝ)Qv .

As usual, we have S(A) and S(A f ), the points of S with values in, respectively, the ring of adeles
and the ring of finite adeles. The (finite) adeles come equipped with the product absolute value
|·|A, and we set

S1(A) = {s ∈ S(A) : ∀χ ∈ (Ŝ)Q, |χ(s)|A = 1}.

Similarly, for each place v of Q, let

Sc
v = {s ∈ S(Qv) : ∀χ ∈ (Ŝ)v, |χ(s)| = 1}.
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This is the unique maximal compact subgroup of S(Qv); if S happens to be anisotropic over Qv,
then this condition is empty and Sc

v = S(Qv).

We further define

Sc = Sc
A f

= ∏
v finite

Sc
v

Sc
A = ∏

v
Sc

v

and set

S(∞) = S(R)× Sc

SQ(∞) = S(Q) ∩ S(∞).

5.1.2. Constants and measures. We can now define all terms which arise in (5.2).

• Quasi-residue ρS: Let F be a Galois extension which splits S. Then the character lattice
X∗(S) can be viewed as a Gal(F/Q)-module, and this module uniquely determines S up
to isomorphism. We denote this representation by σS, and let L(s, σS) = ∏p Lp(s, σS) be
the corresponding Artin L-function (see [Bit11] for a modern treatment). Let r be the mul-
tiplicity of the trivial representation in σS. By definition,

ρS := lim
s→1

(s− 1)rL(s, σS).

• Invariant form ωS: Let ω be an invariant gauge form on S. (In particular, ω is defined over
Q.) Set

ωS = ω∞ ∏
v

Lv(1, σS,v)ωp,

where ωv is the invariant measure on S(Qv) induced by ω.
By the product formula, as long as ω is defined over Q, none of the global invariants

depend on the normalization of ω. We thus may and do assume that ω∞ is the form dt/t
on each copy of R× in S/R, and is the arc length on every copy of the unit circle in S/R.
• Ratio DS: This number is defined using the ratio of two invariant measures (defined below)

on S(A):

D2
S =

νS

µS
.

• Measure µ. Let χ1, · · · , χr be a basis for (Ŝ)Q, and define a map Λ by

S(A)
Λ // (R×+)

r

x � // (|χ1(x)|A, · · · , |χr(x)|A).

(In the cases of interest, when S = Tder or S = T, we have r = 0 or r = 1, respectively.)
Then Λ induces an isomorphism

Λ̃ : S(A)/S1(A)
∼ // (R×+)

r .

(Of course, both sides are trivial if S is anisotropic.)
Define dt̃ by

dt̃ := Λ̃∗(
r

∏
k=1

dt
t
).
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Let dSQ be the counting measure on S(Q) and normalize the Haar measure dS1
Aon S1(A)

to give total measure 1. Then

dµ = dt̃(dS1
A × dSQ).

• Measure νS: This measure is defined in a similar fashion, as follows. Let ξ1, · · · , ξrv be a
Z-basis for (Ŝ)v, and define Λv by

S(Qv)
Λv // (R×+)

rv

x � // (|ξ1(x)|v, · · · , |ξr(x)|v).

We have

Λ̃v : Sv/Sc
v ' Rv :=

{
(R×+)

r∞ v = ∞
Zrv v 6= ∞

.

(Note that that r∞ = 0 if S is anisotropic over R.)
If v = ∞, endow Rv with the product of the measure dt

t on each component; if v is finite,
endow Rv with the counting measure. In each case, let dtv be the pullback, via Λ̃∗v, of this
measure to Sv/Sc

v.
Finally, endow Sc

v with the Haar measure dSc
v of total volume one, and set

νS := ∏
v

νS,v = ∏
v
(dSc

v × dtv).

Then by definition,
νT(Sc) = νS( ∏

v finite
Sc

v) = 1.

For S = T, this is the measure that we will use in the Langlands-Kottwitz formula.
• Tamagawa number τS: The Tamagawa number is defined by

τS =
∫

S1(A)/S(Q)
dm,

where
dt̃(dm× dSQ) = ρ−1

S dωS.
• Class number hS: The class number of S is the (finite) cardinality

hS := #S(Q)\S(A)/S(∞).

• Global units wS: The analogue of the number of roots of unity in a restriction of scalars
torus is

wS = #(Sc
A ∩ S(Q)).

• Regulator RS: We will not need this definition since for an anisotropic torus S, RS = 1.
(See [Shy77, p.370] for the definition).

Remark 5.4. Note that the definition of canonical measure gives volume 1 to the connected compo-
nent of the Néron model S◦ of Sv, for a finite place v. When v is unramified, the maximal compact
subgroup Sc

v coincides with S◦(Zv). However, when v is ramified, S◦(Zv) is a subgroup of finite
index in Sc

v. This relation is explored in detail in [Bit11], but here we avoid it by simply using the
measure νS rather than the canonical measure on the torus.

We quote for future use a crucial, albeit almost tautological, identity for tori which are anisotropic
at infinity.

Lemma 5.5. ([Shy77, Lemma 2]) Let S be an algebraic torus defined over Q such that S(R) is anisotropic.
Then
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(a) |DS|−1/2 = ω∞(S(R))∏` L`(1, σS) volωS(S
c
`), and

(b) ω∞(S(R)) = (2π)dim S and RS = 1.

Here, of course, dim S is the dimension of this torus as an algebraic group.

Proof. (a). This is precisely [Shy77, Lemma 2] (from which we can read that the constant c of that
Lemma is |DS|−1/2), with the only difference that the first factor on the right-hand side in his
Lemma 2 is Φ−1

0 (I) (in his notation). Here I is the lattice defined in the first line of the proof of loc.
cit. Its rank equals r∞, so it is zero when S(R) is compact. In this case the map Φ0 : S(R) → R

r∞
+

is necessarily trivial, and thus Φ−1
0 (I) = S(R).

(b). Since r = r∞ = 0 when S is anisotropic over R, we have RS = 1. (More precisely, in the proof of
Lemma 2 of [Shy77], RS is expressed as the ratio νS(Φ−1(P))/νS(Φ−1(I)); but both parallelotopes
P and I are trivial in our case, since r = r∞ = 0.)

By definition, ω∞ is the gauge form on S. By the classification of real algebraic tori, the only
possibility for S(R) when S is anisotropic over R is S(R) = S1 × · · · × S1, the product of dim S
circles. Then its volume with respect to the natural gauge form is (2π)dim S.

�

5.2. The global volume term. We have the exact sequence

1 // Sc/Sc ∩ S(Q) // S(A f )/S(Q) // S(A)/S(Q)S(∞) // 1.

Note that
#Sc ∩ S(Q) = wS,

see e.g. [Shy77, Lemma 1].

Continuing with the calculation, since the measure of Sc with respect to νS is 1, we get

(5.3) volνS(S(Q)\S(A f )) =
hS

wS
.

5.3. Passing to the derived subgroup. Let G = GSp2g and γ ∈ GSp2g(A
f ) be such that the

centralizer T of γ is an algebraic torus as in §2.2, defined over Q, and in particular, Tder := T∩ Sp2g
is anisotropic over Q. Let µcan

G and νT be the measures that give measure 1 to the maximal compacts
of G(Q`) and T(Q`) at finite places. Let µShyr denote the quotient measure µcan

G /νT on the orbit of
γ. Finally, let µgeom denote the geometric measure as above.

We recall some more notation and results from Shyr’s article. For a homomorphism θ : G → H of
abstract groups with finite kernel and cokernel, the symbol q(θ) stands for |Coker(θ)|/|ker(θ)|.

Recall that in §2.2 we have defined T̃ = Tder ×Gm and explicit isogenies α : T̃ → T and β : T → T̃
(we will use our isogeny β in the role of the isogeny that Shyr denotes by λ). Let βv be the map
of Qv-points induced by it at the place v, and βc

v its restriction to Tc
v . Then [Shy77, Theorem 3]

implies that:

(5.4)
hT

hTder hGm

=
τT

τTder τGm

q(β∞)

q(βQ(∞))q((β̂)Q)
∏
`

q(βc
`).

(The right-hand side does not depend on the choice of the isogeny β since the left-hand side clearly
does not depend on it. ) Here (β̂)Q is the map ( ˆ̃T)Q → (T̂)Q induced by β on Q-rational characters,
and βQ(∞) is the map T̃Q(∞) → TQ(∞) induced by β on units. According to the last identity on



COUNTING ABELIAN VARIETIES OVER FINITE FIELDS VIA FROBENIUS DENSITIES 23

p.369 of loc.cit., for all the tori we are interested in (where for T we have r = r∞ = 1 and for Tder,
r = r∞ = 0), in fact TQ(∞) = T(Q) ∩ Tc

A – a finite group of order wT.

We denote by Q the product ∏` q(βc
`), which will cancel out later, and proceed.

Lemma 5.6. (a) q((β̂)Q) = 1.
(b) We have TQ(∞) = Tder

Q (∞), and thus wT = wTder and q(βQ(∞)) = 2.
(c) q(β∞) = 2.

Proof. (a) We start by observing that the only characters of T̃ that are defined over Q are characters
of Gm, and the characters of T that are defined over Q are all the multiples of the multiplier
character. By definition, for t ∈ T and χ a Q-character of Tder × Gm (i.e., a character of Gm),
β̂(χ)(t) = χ(ηt), and thus β̂ is surjective on rational characters; being a map of rank-1 lattices, it
is injective.

(b) As shown in §2.2, T(Q) = {a ∈ K× : aa ∈ Q×}, Tder(Q) = {a ∈ K× : aa = 1}, where (·) stands
for the non-trivial Galois automorphism of K/K+. At the same time, if an element of a ∈ T(Q) is
also in Tc, this would imply in particular that aa is in Z×` for all `. (Indeed, η ∈ (T̂)Q ⊆ (T̂)Q`

.)
Then aa = 1 since it is both rational and an `-adic unit for all `. This immediately implies the
equality wT = wTder by the observations above this lemma. Finally, βQ(∞) : TQ(∞) → (Tder ×
Gm)(∞) is the map t 7→ (t/η(t), ηt); where t ∈ TQ(∞) = Tder

Q (∞). This map is surjective onto the
set of elements (t′, 1) ∈ (Tder

Q ×Gm)(∞), but the pairs of the form (t′,−1) are not in its image, so
its cokernel has order 2. At the same time this map is injective since when η(t) = 1 (which is the
case for units), it is the identity on the first component.

(c). The map β∞ : T(R)→ (Tder×Gm)(R) is again defined by β∞ : a 7→ (a−1, aa). This map again
has cokernel of size 2 since aa > 0, and is injective. We obtain q(β∞) = 2. �

We also record for future reference that (see equality (4) in [Shy77])

(5.5) volωT̃
(T̃c

` ) = volωT (T
c
` )q(βc

`).

5.4. The measure µShyr vs. geometric measure. Recall our notation: the measure νT gives the
maximal compact subgroup Tc

` of T(Q`) volume 1, and we have denoted by µShyr the quotient
measure on the adjoint orbit of γ`, identified with G(Q`)/T(Q`), which is obtained as the quotient
of the canonical measure µcan

G on G(Q`) by the measure νT. The following proposition appears in
[FLN10], where a similarly constructed measure is denoted by µT\G,`. We observe that there are
subtle differences in the definition of such a quotient measure related to the choice of a compact
subgroup of T(Q`) whose volume is set to be 1, but these differences do not matter in our version
of the proposition, since the volume of the same compact subgroup appears in the denominator.

Proposition 5.7. We have

µ
geom
γ,` = |η(γ)|−

g(g+1)
4

`

√
|D(γ)|`

volωG (G(Z`))

volωT (T
c
` )

µ
Shyr
` ,

where η(γ) is the multiplier of γ.

Proof. For γ ∈ Gder, this follows from equation (3.30) of [FLN10]; we also reproved this relation in
§4.2.1 of [AG17]. In fact, we derive there, for a general group G, the relation

µ
geom
γ,` =

√
|D(γ)|`

volωG (G(Z`))

cT
µcan
` ,
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where cT is a constant that depends only on T, the centralizer of γ. As explained in [AG17, Lemma
A.1], the constant cT here is naturally the volume of the compact subgroup of the torus that is
normalized to have volume 1; thus if we are dealing with the measure µShyr, this should be the

maximal compact subgroup Tc
` . For general γ, the factor |η(γ)|−

g(g+1)
4 appears on the right-hand

side, by considering the action of the centre of G on all the measure spaces involved. This is
explained in detail in [Gor19]. �

We observe that for ` 6= p, we have |η(γ)|` = |det(γ)|` = 1; at p, we have |η(γ)|p = q−1, and we
get the relation

(5.6)

νp([X, λ]) = q−
g(g+1)

2
pdim(Gder)

#Gder(Fp)
Ogeom

γ0 (φq,p)

= q−
g(g+1)

2 q
g(g+1)

4

√
|D(γ)|p

volωG (G(Z`))

volωT (T
c
` )

pdim(Gder)

#Gder(Fp)
OShyr

γ0 (φq,p)

= q−
g(g+1)

4

√
|D(γ)|p

volωT (T
c
` )

OShyr
γ0 (φq,p).

5.5. Proof of Theorem 5.1. Combining equality (5.3) with the results of §5.3, and using that hGm =
τGm = 1, we get (changing the notation to T′ := Tder to reduce the notational clutter):

volνT (T(Q)\T(A f )) =
hT

wT
=

hT′

wT′

τT

τT′τGm

wT′

wT

q(β∞)

q(βQ(∞))q((β̂)Q)
Q =

hT′

wT′

τT

τT′
Q.

Then by Proposition 5.7, we get (with the last equality coming from (5.5)):

volνT (T(Q)\T(A f ))∏
`

µ
Shyr
` =

hT′

wT′

τT

τT′
Q ∏

`

µ
Shyr
`

=
hT′

wT′

τT

τT′
Q ∏

`

volωT (T
c
` )

volωG(G(Z`))
√
|D(γ)|`

|η(γ)|
g(g+1)

4
` µgeom

=
hT′

wT′

τT

τT′
Q|η(γ)|−

g(g+1)
4

∞ |D(γ)|1/2
∞ Q−1 ∏

`

volωT̃
(T̃c

` )

volωG(G(Z`))
µgeom.

Now, observe that volωT̃
(T̃c

` ) = volωT′ (T
′c
`)

`−1
` , and therefore

volωT̃
(T̃c

` )

volωG(G(Z`))
=

volωT′ (T
′c
`)

volωder
G
(Gder(Z`))

.
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Now, using Shyr’s formula (Theorem 5.3) for hT′/wT′ , and then plugging in the expression for DT′

in terms of L-factors from Lemma 5.5, we obtain:

volνT (T(Q)\T(A f ))∏
`

µShyr =
hT′

wT′

τT

τT′
|η(γ)|−

g(g+1)
4

∞ |D(γ)|1/2
∞ ∏

`

volωT′ (T
′c
`)

volωder
G
(Gder(Z`))

µgeom

=
τT

τT′

|η(γ)|−
g(g+1)

4
∞ |D(γ)|1/2

∞ ρT′τT′ |DT′ |1/2

RT′
∏
`

volωT′ (T
′c
`)

volωder
G
(Gder(Z`))

µgeom

=
τT

τT′

|η(γ)|−
g(g+1)

4
∞ |D(γ)|1/2

∞ τT′L(1, σT′)

(2π)g ∏` L`(1, σT′) volωT′ (T
′c
`)

∏
`

volωT′ (T
′c
`)

volωSp2g
(Sp2g(Z`))

µgeom

= |η(γ)|−
g(g+1)

4
∞

|D(γ)|1/2
∞ τT

(2π)g ∏
1

volωSp2g
(Sp2g(Z`))

µgeom.

The theorem now follows from the simple observation that

volωSp2g
(Sp2g(Z`)) =

# Sp2g(Z/`Z)

`dim(Sp2g)
.

5.6. Proof of Theorem A. Now we are ready to prove the main theorem. Recall that given
[X, λ]/Fq, we have chosen an element γ0 ∈ G(A f ), and a δ0 ∈ G(Qq), and used them to define
local ratios ν`. The claim to be proved is that

#̃I([X, λ], Fq) = q
g(g+1)

4 τTν∞([X, λ])∏
`

ν`([X, λ]).

We prove this by showing that the product of local probabilities on the right-hand side equals the
right-hand side of the formula of Langlands and Kottwitz.

Combining Corollaries 4.7, 4.12, and Theorem 5.1, and plugging in |η(γ0)|∞ = q (see also (5.6) for
the combined form of the most complicated term at ` = p), we get:

∏
`

ν`(γ0) = νp(γ0) ∏
` 6=p

ν`(γ0) = q−
g(g+1)

2 Ogeom
γ0 (φq,p)

(
∏
` 6=p

Ogeom
γ0 (φ0,`)

)(
∏
`

`dim(Sp2g)

# Sp(Z/`)

)

= q−
g(g+1)

4
(2π)g

|D(γ)|1/2
∞ τT

volShyr(T(Q)\T(A f )) ∏
` 6=p

OShyr(φ0,`)OShyr(φq,p),

which is exactly the right-hand side of the Langlands and Kottwitz formula up to the factor

q
−g(g+1)

4
(2π)g

|D(γ)|1/2
∞ τT

that we need to take to the other side.

6. COMPLEMENTS

For the convenience of a hypothetical reader interested in explicit calculations, we collect here
some reminders concerning the terms which arise in (1.3).

6.1. ν∞. Recall that we have defined (4.2) ν∞([X, λ]) as
√
|D(γ0)|/(2π)g, where D(γ0) is the Weyl

discriminant D(γ0) = ∏α∈Φ(1 − α(γ0)), the product being over all roots of G. We may relate
this to the (polynomial) discriminant of fX/Fq(T), the characteristic polynomial of Frobenius, as
follows.
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6.1.1. Weyl discriminants. Explicitly, γ0 has multiplier λ0 := η(γ0) = q. Write the (complex) eigen-
values of (a Q-representative of) γ0 – equivalently, the roots of fX/Fq(T) – as (λ1, · · · , λg, λ0/λ1, · · · , λ0/λg).
Then

D(γ) = ∏
1≤i<j≤g

δij · ∏
1≤i≤g

δi

where

δij = (1− λi/λj)(1− λj/λi)(1− λiλj/λ0)(1− λ0/(λiλj))

δi = (1− λ2
i /λ0)(1− λ0/λ2

i ).

Possibly after reordering the conjugate pairs {λi, λ0/λi}, we may and do assume that λj =
√

q exp(iθj)
with 0 ≤ θj < π. Then

δij = (2 cos(θi)− 2 cos(θj))
2

δj = 4 sin2(θj).

6.1.2. Elliptic curves. Suppose that [X, λ] is an elliptic curve with its canonical principal polariza-
tion, say with characteristic polynomial of Frobenius T2 − aT + q. Then a = 2

√
q cos(θ), and

D(γ0) = 4 sin2(θ) = 4− a2

q , and

ν∞([X, λ]/Fq) =
1

2π

√
|D(γ0)| =

1
π

√
1− a2

4q
.

Note that this term is half the archimedean term introduced in [Gek03, (3.3)] (when q = p) and
[AG17, (2-7)]. For purposes of comparison, we summarize this relationship by writing

ν∞([X, λ]) =
1
2

νGek
∞ ([X, λ]) =

1
2

νAG
∞ ([X, λ]).

6.1.3. Polynomial discriminants. To facilitate comparison with [AW15, Gek03, GW19], we express
D(γ0) in terms of polynomial discriminants. Let f (T) = fX/Fq(T), and let f+(T) = f+X/Fq

(T) be
the minimal polynomial of the sum of γ0 and its adjoint, so that

f+X/Fq
(T) = ∏

1≤j≤g
(T − (λj + q/λj)).

Note that Q[T]/ f+(T)∼=K+, the maximal totally real subalgebra of the endomorphism algebra of
X.

Lemma 6.1. We have
disc( f (T))

disc( f+(T))
= (−1)gq

g(3g−1)
2 D(γ0).

Proof. On one hand,

disc( f (T)) = ∏
1≤i<j≤g

α2
ij ∏

1≤i≤g
α2

i

where

αij = (λi − λj)(λi − λ0/λj)(λ0/λi − λj)(λ0/λi − λ0/λj)

and

αi = (λi − λ0/λi).
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On the other hand,

disc( f+(T)) = ∏
1≤i<j≤g

β2
ij

where

βij = (λi + λ0/λi − (λj + λ0/λj)).

Now use this to evaluate disc( f (T))/ disc( f+(T)), while bearing in mind that

αij

β2
ij
= λ0 and

αij

δij
= λ2

0 and
α2

i
δi

= −λ0.

�

6.2. ν`. Gekeler [Gek03] observed that, for elliptic curves, his product formula essentially com-
putes an L-function; a similar phenomenon has been observed in other contexts, as well [AW15,
GW19]. We briefly explain how this relates to (1.3). This detour also has the modest benefit of
showing that the right-hand side of (1.3) converges, albeit conditionally.

6.2.1. Zeta functions. We express the zeta function of a number field M as ζM(s) = ∏` ζM,`(s),
where ζM,`(s) = ∏λ|`(1−NM/Q(λ)

−s)−1. For a direct sum M = ⊕t
i=1Mi of such fields we write

ζM,`(s) = ∏i ζMi ,`(s); the product over all primes yields ζM(s) = ∏i ζMi(s).

Recall (as in §5.1.2) that to a torus S/Q one associates an Artin L-function L(s, σS) = ∏` L`(s, σS).
This construction is multiplicative for exact sequences of tori, and for a finite direct sum M of num-
ber fields one has L(s, σRM/QGm) = ζM(s). (It may be worth recalling that RM/QGm∼=⊕RMi/QGm.)

If ` is unramified in some splitting field for S, then (cf. [Bit11, 2.8], [Vos98, 14.3]) one has

#S(F`) = `dim SL`(1, σS)
−1.

Lemma 6.2. Suppose that ` - 2p disc( fX/Fq(T)). Then

ν`([X, λ]) =
ζK,`(1)

ζK+,`(1)
.

Proof. By Lemma 4.4

ν`([X, λ]) =
#{γ ∈ G(F`) : γ ∼ π1(γ0)}

#G(F`)/#AG(F`)

=
#G(F`)/#T(F`)

#G(F`)/ (`g#Gm(F`))

= `g #Gm(F`)

#T(F`)
=

L`(1, σT)

L`(1, σGm)
,

since dim T = g + 1. Using (2.2), first to see that L(s, σT) = L(s, σTder)L(s, σGm) and second to
compute L(s, σTder), we recognize this as

=
ζK,`(1)

ζK+,`(1)
.

�

Since ζK(s) and ζK+(s) both have a simple pole at s = 1, we immediately deduce:

Corollary 6.3. The right-hand side of (1.3) converges conditionally.
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Moreover, up to a finite factor B([X, λ]), we can express #̃I([X, λ], Fq) in terms of familiar quanti-
ties:

Corollary 6.4. We have

#̃I([X, λ], Fq) = τT
q−

g(3g−1)
4

(2π)g

√∣∣∣∣ disc( f )
disc( f+)

∣∣∣∣B([X, λ]) lim
s→1+

ζK(s)
ζK+(s)

where

B([X, λ]) = ∏
`|2p disc( f )

ζK+,`(1)
ζK,`(1)

ν`([X, λ]).

6.2.2. Elliptic curves. If [X, λ] is an elliptic curve, let χ be the quadratic character associated to the
imaginary quadratic field K. Then K+ = Q, and ζK(s)/ζQ(s) = L(s, χ).

Now further suppose that q = p and that the Frobenius order is maximal, i.e., that Z[T]/ fX/Fq(T)∼=OK.
Then Gekeler shows with an explicit calculation that for each prime `, νGek

` ([X, λ]) = L`(1, χ), and
thus ∏` νGek

` ([X, λ]) = L(1, χ).

6.2.3. Abelian varieties with maximal Frobenius order. Similarly, suppose [X, λ] is an ordinary abelian
surface with End(X) ⊗ Q a cyclic quartic extension of Q, and further suppose that the Frobe-
nius order is maximal. In [AW15], the authors define a local term νAW

` ([X, λ]), and show that
∏` νAW

` ([X, λ]) = ζK(1)/ζK+(1). This observation has been extended to certain abelian varieties
of prime dimension [GW19, Prop. 8.1].

6.3. νp. Since the multiplier η(γ0) of Frobenius is q, γ0, while an element of M(Zp) ⊂ G(Qp), is
never an element of G(Zp). Nonetheless, if the isogeny class is ordinary, it is possible to transfer
part of the work in calculating νp([X, λ]) from M(Zp) to G(Zp), as follows.

Suppose X is ordinary. Then its p-divisible group splits integrally as X[p∞] = X[p∞]tor ⊕ X[p∞]ét.
(In general, the slope filtration only exists up to isogeny, as in Lemma 3.5.) Therefore, there exists
a decomposition VZp = V ét

Zp
⊕ Vtor

Zp
into maximal isotropic summands stable under γ0, where

α0 := γ0|V ét
Zp
∈ End(V ét

Zp
) is invertible; and the polarization induces an isomorphism Vtor

Zp
with the

dual of V ét
Zp

, such that γ0|Vtor
Zp

= q(α>0 )
−1. This can also be proved directly through linear algebra.

Indeed, let β0 = qγ−1
0 . Then V ét

Zp
= ∩nγ◦n0 (VZp), while Vtor

Zp
= ∩nβ◦n0 (VZp).

Lemma 6.5. For n and d sufficiently large and γ ∈ M(Zp/pn), the following conditions are equivalent:

(a) γ ∼M(Zp/pn)d
γ0 mod pn;

(b) there exists some γ̃ ∈ M(Zp) such that γ̃ mod pn = γ and γ̃ ∼G(Qp) γ0;
(c) γ stabilizes a decomposition VZp/pn∼=V+

Zp/pn ⊕V−
Zp/pn into maximal isotropic subspaces, and there

exists an isomorphism ι : V+
Zp/pn → V ét

Zp/pn such that ι∗α0 = γ|V+
Zp/pn

.

Proof. The equivalence of (a) and (b) is Lemma 3.2. For the equivalence of (a) and (c), use the
argument above to show that any such γ induces an appropriate decomposition of VZp/pn . �

Therefore, if α0 mod p is regular, we obtain a version of Lemma 6.2 at p.
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Corollary 6.6. Suppose [X, λ] is ordinary and ordp disc( fX/Fq(T)) = e · g(g− 1). Then

νp([X, λ]) =
ζK,p(1)

ζK+,p(1)
.

Note that we always have qg(g−1)|disc( fX/Fq(T)). The case g = 1 also follows from the explicit
calculation in [Gek03, Thm. 4.4].

Proof. Define ε0 ∈ Sp(VZp) by ε0|V ét
Zp

= α0 and ε0|Vtor
Zp

= (α>0 )
−1.

The argument of Lemma 6.5 shows that, for sufficiently large d and n, both #C(d,n)(γ0) and #C(d,n)(γ0)

are given by the product of the number of decompositions VZp/pn = V+
Zp/pn ⊕ V−

Zp/pn into maxi-
mal isotropic subspaces, and the number of α ∈ End(VZp/pn) with α ∼End(VZp/pn )d

α0. In particular,
#C(d,n)(γ0) = #C(d,n)(ε0).

The regularity hypothesis implies that ε0 mod p is regular, and the result follows from Lemma
6.2. �

6.4. Explicit examples.

6.4.1. g = 1. Consider the elliptic curve E/F7 with affine equation y2 = x3 + x + 1. Its Frobenius
polynomial is fE(T) = T2 − 3T + 7, which has discriminant −19, a fundamental discriminant. So
the order generated by the Frobenius endomorphism is the ring of integers in K := Q(

√
−19);

using Magma, we numerically estimate ∏` ν`(E/F7) = L(1,
(−19
•
)
) as ≈ 0.72073. Continuing to

work numerically, we have ν∞(E/F7) =
1

2π

√
4− 32

7 ≈ 0.2622. Since T = RK/QGm we have τT = 1,

and thus τT
√

7ν∞(E/F7)∏` ν`(E/F7) ≈ 0.5000.

This reflects the easily verified arithmetic statement that the only elliptic curve over F7 with trace
of Frobenius 3 is E itself; and Aut(E)∼=O×K = {±1}, so that the weighted size of this isogeny class
is #̃I([E], F7) =

1
2 . (In modest contrast, [Gek03] assigns weight 2/# Aut(F) to an elliptic curve F;

this is reflected in the fact that νGek
∞ ([E], /F7) = 2ν∞([E], F7).)

6.4.2. g = 4. Consider the 3-Weil polynomial

f (T) = T8 − 6T7 + 13T6 − 10T5 + T4 − 30T3 + 117T2 − 162T + 81.

It turns out that there is a unique principally polarized abelian fourfold (X, λ) over F3 with char-
acteristic polynomial equal to f (T). (This is a single datapoint in a census of isogeny classes which
will soon be integrated into the LMFDB.)

Let K = Q[T]/ f (T). One readily checks that disc( f (T))/ disc(K) = 34(4−1), and so ν`([X, λ]) =
ζK,`(1)/ζK+,`(1) for all finite `, including ` = p. Again, we numerically estimate ∏` ν`([X, λ]) =

lims→1+
ζK(s)

ζK+ (s) ≈ 0.871253 and ν∞([X, λ]) ≈ 0.000111808. The field K is Galois over Q, with group
Gal(K/Q)∼=Z/4⊕Z/2, and the Tamagawa number of the torus T is 2 (see A.6). Our formula
numerically yields

#̃I([X, λ], F3) = 33τTν∞([X, λ], F3) lim
s→1

ζK(s)
ζK+(s)

≈ 0.050000.

This reflects the fact that the torsion group of O×K , and thus Aut([X, λ]), has order 20.
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6.5. Level structure. The Langlands-Kottwitz formula (2.1) is actually written for abelian varieties
with arbitrary level structure, and thus a version of our main formula is available in the context of
abelian varieties with level structure, too.

6.5.1. Product formula. Let Γ ⊂ G(Ẑ
p
f ) be an open compact subgroup. There is a notion of prin-

cipally polarized abelian variety with level Γ structure; let Ag,Γ be the corresponding Shimura
variety. If (X, λ, α) ∈ Ag,Γ(Fq) is a principally polarized abelian variety with level Γ-structure,
then the size of its isogeny class in this category is given by the Kottwitz formula, except that the
integrand in the adelic orbital integral is replaced with 1Γ.

We make the definition

ν`([X, λ, α]) = lim
d→∞

lim
n→∞

#(C(d,n)(γ0) ∩ πn(Γ`))

#G(Z`/`n)/#AG(Z`/`n)
.

The analogue of Corollary 4.6 holds, and states that there exists d(γ0) such that

Ogeom
γ0 (1Γ`

) = lim
n→∞

vol|dωG |(C̃(d(γ0),n)(γ0) ∩ Γ`)

vol|dωA|(Ũn(γ0))
.

The calculations at p and ∞, as well as the global volume term, are unchanged, and we find that

(6.1) #̃I([X, λ, α], Fq) = q
g(g+1)

4 τTν∞([X, λ])∏
`

ν`([X, λ, α]).

6.5.2. Principal level structure. Fix a prime `0, and define Γ(`0) = ∏` Γ(`0)` by

Γ(`0)` =

{
G(Z`) ` 6= `0

ker(G(Z`0)→ G(Z`0 /`0)) ` = `0.

Then Ag,Γ(`0) is the moduli space of abelian varieties equipped with a full principal level `0-
structure.

For example, to fix ideas, suppose that g = 1 and that `0 6= p, and let a satisfy |a| ≤ 2
√

q, p - a
and `0||(a2− 4q); we consider the set of elliptic curves with characteristic polynomial of Frobenius
f (T) = T2 − aT + q. Then some, but not all, elements of the corresponding isogeny class admit a
principal level `0-structure (see, e.g., [AW13]).

Let (X, λ, α) be an elliptic curve over Fq with trace of Frobenius a and full level `0-structure α.

We may explicitly compute ν`0([X0, λ, α]) as follows. Let χ`0 =
(
·
`0

)
be the quadratic character

modulo `0.

Lemma 6.7. We have

ν`0([X, λ, α]) =
1
`2

0

1
1− χ`0(disc( f )/`2

0)/`0
.

Proof. Let γ0 = γX,Fq,`0 be a Frobenius element for X at `0. By hypothesis, γ0 = 1 + `0β0 for
some β0 ∈ Mat2(Z`0). Since `2

0 is the highest power of `0 dividing disc( f ), we in fact have β0 ∈
GL2(Z`0), and β0 is regular mod`0, i.e., π1(β0) is regular.

Suppose that γ ∈ Γ`0 satisfies γ ∼G(Q`0 )
γ0. Then γ = 1 + `0β for some β ∈ GL2(Z`0) which is

regular mod`0, and direct calculation shows β ∼G(Q`0 )
β0. Lemma 3.1 then shows that β ∼G(Z`)

β0.
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Consequently, for any d ≥ 0 and any n ≥ 2, we have bijections between the following sets:

{γ ∈ G(Z`0 /`n
0) : γ ∼M(Z`0 /`n

0 )d
πn(γ0)};

{β ∈ G(Z`0 /`n−1
0 ) : β ∼M(Z`0 /`n−1

0 )d
πn−1(β0)};

and {β ∈ G(Z`0 /`n−1
0 ) : β ∼G(Z`0 /`n−1

0 ) πn(β0)}.

Therefore,

ν`0([X, λ, α]) =
#G(Z`0 /`n−1

0 )/#Gβ0(Z`0 /`n−1
0 )

#G(Z`0 /`n
0)/#AG(Z`0 /`n

0)

=
#G(Z`0 /`n−1

0 )

#G(Z`0 /`n
0)

#AG(Z`0 /`n
0)

#Gβ0(Z`0 /`n−1
0 )

=
1
`4

0

`2
0#AG(Z`0 /`n−1

0 )

#Gβ0(Z`0 /`n−1
0 )

=
1
`2

0

#AG(Z`0 /`0)

#Gβ0(Z`0 /`0)

=
1
`2

0

1
1− χ`0(disc( f )/`2

0)/`0
.

�

7. GL2 RECONSIDERED

In [AG17], we essentially treated the g = 1 case of the present paper. Unfortunately, a simple alge-
bra error – νAG

∞ ([X, λ]) = 2
π

√
|D(γ0)| (§6.1.2), in spite of the claims of the penultimate displayed

equation [AG17, p.20] – masked certain mistakes involving the calculations at p. We take the op-
portunity to correct these mistakes. The reader pleasantly unaware of these issues with [AG17]
may simply view the present section as an explication of our technique in the special case where
g = 1, and thus G = GL2.

Note that the definition [AG17, (2-6)] could have been replaced with a criterion involving charac-
teristic polynomials, e.g.,

νp(a, q) = lim
n→∞

#{γ ∈ Mat2(Zp/pn) : fγ ≡ fγ0 mod pn}
#G(Zp/pn)/#A(Zp/pn)

.

7.1. Assertions at p. There are two problematic claims in [AG17]:

(1) For the test function 1G(Z`) at ` 6= p, we have

ν`(a, q) =
`3

# SL2(F`)
Ogeom

γ0 (1G(Z`)).

It is claimed in [AG17, Lemma 3.7] that the same is true for ` = p, where the test function

φq is the characteristic function of G(Zp)

(
q 0
0 1

)
G(Zp).
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(2) In [AG17, Appendix], revisiting the calculation [FLN10, (3.30)], we assert that.

(7.1) µ
geom
γ,` =

√
|D(γ)|`

vol|ωG |`(G(Z`))

vol|ωT |`(T
◦(Z`))

µT\G,`.

This is valid for ` 6= p, but requires correction at p, because our Chevalley-Steinberg map
is not exactly the same as the map in [FLN10].

7.2. From point-counts to measure. In (1), one exploits the fundamental fact that point counts
mod`n converge to volume with respect to the Serre-Oesterlé measure µSO. In the case where
` = p, however, the ambient space is Mat2(Zp), rather than (its open subset) G(Zp). Thus, the
volume of the set Vn of [AG17] should be computed with respect to µSO

Mat2
.

Moreover, one should be using the invariant measure dx ∧ dy
|y| on the Steinberg base AGL2

∼=A1 ×
Gm, rather than the measure pulled back from A1 ×A1. Then the measure of a radius p−n-
neighborhood Un of (a, q) in A is p−2n/|det(γ0)| = p−2n/q−1, and we find

νp,n(a, q) =
p3

# SL2(Fp)

|det(γ0)|2 volµGL2
(Vn(γ0))

|det(γ0)| volA1×Gm
(Un)

= |det(γ0)|
p3

# SL2(Fp)
Ogeom

γ0 (φq) = q−1 p3

# SL2(Fp)
Ogeom

γ0 (φq).

(This differs from the assertion of [AG17, Lemma 3.7] by a factor of q.)

7.3. From geometric measure to canonical measure. Since orbital integrals of rational-valued
functions with respect to the canonical measure are rational, while

√
|D(γ0)|p =

√
q, the assertion

of (2) cannot hold at ` = p.

While the relation between the geometric measure and the canonical measure that we rely on is
correct for a semisimple group, it needs a correction factor for a reductive group. This part is
completely general for all reductive G, and is discussed in detail in [Gor19]; the correct formula is
stated in Proposition 5.7. In particular, the correct calculation at p is

µ
geom
γ,p = |η(γ)|−

g(g+1)
4

p

√
|D(γ)|p

vol|ωG |p(G(Zp))

vol|ωT |p(T
◦(Zp))

µT\G,p,

where η(γ) is the multiplier of γ.

APPENDIX A. BY WEN-WEI LI AND THOMAS RÜD

We compute the Tamagawa numbers of some anisotropic tori in GSp2g and Sp2g associated with a
single Galois field extension (see section 2.2), and present a partial result towards the general case
that illustrates the difficulties.

Recall the setup of 2.2 in the case of a single Galois extension. Let K ⊃ K+ ⊃ Q be a tower of field
extensions with K Galois, such that [K : K+] = 2 and [K+ : Q] = g. We define

Tder = Ker
(

RK/Q(Gm)
NK/K+−→ RK+/Q(Gm)

)
= RK+/QR(1)

K/K+(Gm) ⊂ Sp2g ,

and

T = Ker
(

Gm ×Spec(Q) RK/Q(Gm)
(x,y) 7→x−1 NK/K+ (y)

−→ RK+/Q(Gm)

)
⊂ GSp2g.
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They fit in the short exact sequence

1 // Tder // T // Gm // 1 .

Also, recall that we have been using τT (resp τTder) to denote the Tamagawa numbers τQ(T) and
τQ(Tder). We will show the following.

Proposition A.1. One has τTder = τK+(R(1)
K/K+Gm) = 2.

For the case of T, the result varies with the extension.

Proposition A.2. Assume that K is a Galois CM field and K+ is its maximal totally real subfield. Then we
have τT ≤ 2, and moreover :

• If g is odd then τT = 1.
• If K/Q is cyclic, then τT = 1.
• If g = 2 then τT = 1 when Gal(K/Q) ∼= Z/4Z and τT = 2 when Gal(K/Q) ∼= (Z/2Z)2.

More results and details will appear in the second author’s forthcoming thesis.

We base our approach the following formula of Ono.

Theorem A.3 ([Ono63]). Let T be an algebraic torus defined over a number field F and split over some
Galois extension L. Then its Tamagawa number can be computed as

τF(T) =
|H1(L/F, X?(T))|
|X1(T)| .

Here X?(T) denotes the character lattice of T. The symbol X1(T) denotes the corresponding Tate-Shafarevich
group defined by

(A.1) Xi(T) = Ker(Hi(L/F, T)→∏
v

Hi(Lw/Fv, T)),

where v runs over the primes of F and w is a prime of L with w|v.

Our approach is to do the computation on the level of character lattices. A very important con-
sequence of Tate-Nakayama duality theorem (see [PR91, Theorem 6.10]) is that for a torus T as in
the previous theorem, the Pontryagin dual of X1(T) is isomorphic to X2(X?(T)), so it suffices to
compute |X2(X?(T))|.
The proof of proposition A.1 will be done in the next section. The proof of proposition A.2 occupies
sections A.2 to A.5. In section A.6 we present an example not covered by proposition A.2. In
section A.7 we present a computation for the numerator that illustrates the difficulties that arise
for a general torus (not assuming that T is contructed from a single field).

A.1. Computation of τTder . We write the proof of proposition A.1 using Theorem A.3. Since the
Tamagawa number is preserved by restriction of scalars we have τTder = τQ(RK+/QR(1)

K/K+Gm) =

τK+(R(1)
K/K+Gm). The cohomology of the characters of a norm 1 torus is obtained by a classic com-

putation that one can see for instance in the proof of the Hasse norm theorem in [PR91, Theorem
6.11]. We have

Ĥi(K/Q, X?(Tder)) = Ĥi(K/K+, R(1)
K/K+Gm) = Ĥi+1(Z/2Z, Z) =

{
Z/2Z if i is odd
{0} if i is even .

In particular, |X1(Tder)| = |X2(X?(Tder))| ≤ |H2(X?(Tder))| = 1. We conclude τTder = 2
1 = 2.

This proves proposition A.1.
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A.2. Computation of the first cohomology group of the character lattice. From now on, we focus
on the proof of proposition A.2, and therefore we will assume that K is a CM-field with K+ its
maximal totally real subfield. Let ι be the nontrivial element of Gal(K/K+), and let Γ, Γ+ denote
respectively the Galois groups of K/Q, and K+/Q. Note that K+ is indeed Galois over Q by virtue
of K being a CM-field. The torus T arises as the subtorus of RK/Q(Gm) with the set of Q-points
consisting of elements x ∈ K× such that xι(x) ∈ Q and Tder(Q) is the set of elements x ∈ K× such
that xι(x) = 1. We have the following exact sequence of finite groups:

(A.2) 1 // 〈ι〉 ∼= Z/2Z // Γ // Γ+ // 1 .

For each σ ∈ Γ+ fix a preimage σ̂ ∈ Γ. We get the description of X?(RK/Q(Gm)) = Z[Γ] as the set
of Z-linear combinations of σ̂ and σ̂ι with σ ∈ Γ+.

The embedding of T in RK/Q(Gm) gives us a surjective map X?(RK/Q(Gm)) → X?(T). For χ =
∑σ∈Γ+ aσσ̂ + ∑σ∈Γ+ bσσ̂ι ∈ X?(RK/Q(Gm)) and t ∈ T(Q), we have

χ(t) = ∏
σ∈Γ+

σ̂(t)aσ ∏
σ∈Γ+

σ̂(ι(t))bσ

= ∏
σ∈Γ+

σ̂(t)aσ ∏
σ∈Γ+

σ̂
(

λt−1
)bσ

where tι(t) = λ ∈ Q×

= λ∑σ∈Γ+ bσ ∏
σ∈Γ+

σ̂(t)aσ−bσ .

We get the descriptions :

X?(T) = Z[Γ]/

{
∑

σ∈Γ+

aσσ̂ + ∑
σ∈Γ+

bσσ̂ι : aσ = bσ for σ ∈ Γ+ and ∑
σ∈Γ+

bσ = 0

}
(A.3)

= Z[Γ]/L,(A.4)

where L = {∑σ∈Γ+ aσσ̂(1 + ι) : ∑σ∈Γ+ aσ = 0}. For Tder, we have λ = 1 so we recover

(A.5) X?(Tder) = Z[Γ]/{x = ι(x)} = Z[Γ̂+]⊗Z[ι]/ 〈1 + ι〉 = X?(RK+/QR(1)
K/K+(Gm)).

In order to compute H1(K/Q, X?(T)) we use the inflation-restriction exact sequence, which one
can find in [GS06, Proposition 3.3.14 p.65]. To simplify notations, let Λ = X?(T) = Z[Γ]/L as in
(A.3).

The inflation-restriction exact sequence associated with the short exact sequence (A.2) takes the
form

(A.6) 0 // H1(Γ+, ΛZ/2Z) // H1(Γ, Λ) // H1(Z/2Z, Λ)Γ+
// H2(Γ+, ΛZ/2Z) // H2(Γ, Λ) .

Lemma A.4. The sequence (A.6) can be rewritten as

(A.7) 0 // 0 // H1(Γ, Λ) // (Z/2Z)
1+(−1)g

2 // Γ+ab // H2(Γ, Λ) .

In particular, τT ≤ |H1(Γ, X?(T))| ≤ 2.
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Proof. Let x ∈ Z[Γ], and let [x] denote its class in Λ. Clearly [x] is fixed by ι if and only if x− ιx ∈ L,
and since every element of L is fixed by ι, then so must x− ιx which forces x = ιx. Therefore,

ΛZ/2Z = { ∑
σ∈Γ+

aσσ̂(1 + ι)}/
〈

∑
σ∈Γ+

aσσ̂(1 + ι) : ∑
σ∈Γ+

aσ = 0

〉
∼= Z[Γ+]/I,

where I is the augmentation ideal of Z[Γ+], i.e. the subspace of sum-zero vectors. Further, observe
that Z[Γ+]/I ∼= Z as Γ+-modules where Z has trivial Γ+-action (by definition of I). We get that

H1(Γ+, ΛZ/2Z) ∼= H1(Γ+, Z) = Hom(Γ+, Z) = {0}.

Also, using the sequence

(A.8) 0 // Z // Q // Q/Z // 0 ,

since the middle term is uniquely divisible hence cohomologically trivial, one has

H2(Γ+, Z) ∼= H1(Γ+, Q/Z) = Hom(Γ+, Q/Z) ∼= Γ+ab.

The only term left to compute is H1(Z/2Z, Λ)Γ+
. As a Z/2Z-module, we can write Λ = Zg ⊕

Zg/L where L = {(a, a) : a = (a1, . . . , ag) ∑ ai = 0}, and Z/2Z acts as (a, b) 7→ (b, a). Therefore,
we have

0 // L // Zg ⊕Zg = Z[Z/2Z]g // Λ // 0 .

Since the middle term is cohomologically trivial as a Z/2Z-module, and Z/2/Z acts trivially on
L, we have

H1(Z/2Z, Λ) ∼= H2(Z/2Z, L) ∼= Ĥ0(Z/2Z, L) ∼= L/2L.

To compute L/2L, we view L as a submodule of Zg of zero-sum elements. Recall that by construc-
tion of L as a group algebra, Γ+ acts transitively on L.

Let a = (a1, . . . , ag) ∈ L. We want to compute (L/2L)Γ+
, and for that we reason on the parity of

ai’s.

• If all ai are even, then a = 2a′ and a′ ∈ L, hence a ∈ 2L.
• If a has ai even and aj odd, considering a permutation σ ∈ Γ+ sending the ith coordinate to

the jth, we have that the jth coordinate of a− σa is aj− ai which is odd, hence a− σa /∈ 2L.
• The last case to consider is when all ai are odd. In that case, ∑i ai has the same parity as

g, so a ∈ L can only happen if g is even. One can prove that every element of L/2L has
a representative of the form a = (a1, . . . , ag) ∈ Zg with ∑i ai = 0 and |ai| ≤ 1. When
g is even and all ai are odd, the only possible such elements are vectors with half the
coordinates being −1 and the other half 1. Moreover all such vectors are in the same coset
of 2L (one can permute the ±1 coordinates by adding ±2).

This shows that (L/2L)Γ+
contains no nontrivial element when g is odd, and only one when g is

even and conclude the proof. �

Corollary A.5. When g is odd, one has H1(K/Q, X?(T)) = {0} and

H2(K/Q, X?(T)) ∼= Γ+ab.

In particular, H2(K/Q, X?(T)) has odd order, and so does X1(T), since it is dual to X2(X?(T)) ⊂
H2(K/Q, X?(T)).
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Proof. The first equality comes directly from the sequence (A.7).

For the second equality, taking duals of the exact sequence (2.2), one gets

0 // Z // X?(T) // X?(Tder) // 0 .

The cohomology of this sequence gives us

H1(Γ, X?(T)) // H1(Γ, X?(Tder)) // H2(Γ, Z) // H2(Γ, X?(T)) // H2(Γ, X?(Tder)) .

We computed the cohomology Hi(Γ, X?(Tder)) = Hi(Z/2Z, X?(R(1)
K/K+Gm)) in section A.1.

We can plug in in H1(Γ, X?(T)) = {0} = H2(Γ, X?(Tder)), H2(Γ, Z) ∼= H1(Γ, Q/Z) ∼= Γab, and
H2(Γ, X?(Tder)) ∼= Z/2Z, which gives us

0 // Z/2Z // Γab // H2(Γ, X?(T)) // 0 ,

as desired. �

Proposition A.6. When the sequence (A.2) splits, one has H1(K/Q, X?(T)) =

{
{0} if g is odd
Z/2Z if g is even .

In particular, this gives an alternate proof of the triviality of H1(K/Q, X?(T)) whenever g is odd.

Proof. Since (A.2) splits, one can write the inflation-restriction exact sequence associated with the
short exact sequence

1 // Γ+ // Γ // Z/2Z // 1 .

This gives us

(A.9) 0 // H1(Z/2Z, ΛΓ+
) // H1(Γ, Λ) // H1(Γ+, Λ)Z/2Z // H2(Z/2Z, ΛΓ+

) // H2(Γ, Λ) .

Since the sequence (A.2) splits, we have Z[Γ] = Z[Γ+] ⊗ Z[ι] as a Γ-module. We have Λ =
Z[Γ+]⊗Z[ι]/I ⊗ (1 + ι) where I is the augmentation ideal of Z[Γ+]. Since Z[Γ+] is an induced
module, and I ⊗ (1 + ι) ∼= I as a Γ+-module, we get Ĥi(Γ+, Λ) = Ĥi+1(Γ+, I). Now since Z =
Z[Γ+]/I with Z seen as a trivial module, the same argument yields Ĥi(Γ+, Λ) ∼= Ĥi(Γ+, Z). In
particular, H1(Γ+, Λ) = {0} so the sequence (A.9) gives an isomorphism H1(Γ, Λ) ∼= H1(Z/2Z, ΛΓ+

).

Direct computations using that
+
σ := ∑σ∈Γ+ σ spans the set of Γ+-fixed elements of Z[Γ+] give us

that {1⊗ (1 + ι),
+
σ ⊗ ι} is a Z-basis for ΛΓ+

, on which ι acts via
(

1 g
0 −1

)
. Identifying the space

with Z2 we can compute cocycles and coboundaries. Coboundaries are of the form aι = (−gb, 2b)
for b ∈ Z. Cocycles are of the form aι = (a, b) with 2a + gb = 0. Thus, if b is even then it is
a coboundary, if b is odd then g cannot be odd, and so we only get a nontrivial cocycle with g
even and b odd. The difference of two nontrivial cocycles has an even second entry, so it is a

coboundary. This proves H1(Z/2Z, ΛΓ+
) =

{
{0} if g is odd
Z/2Z if g is even as desired.

For the last assertion in the proposition, when g is odd, by the Schur-Zassenhaus theorem (see
[Rot95, Theorem 7.41]) the sequence (A.2) splits and we get our result immediately. �
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A.3. Case g odd. Now we are ready to show

Lemma A.7. If g is odd, then τT =
1
1
= 1.

Proof. Using corollary A.5 we have that |H1(K/Q, X?(T))| = 1, and X1(T) has odd order. To
show that X1(T) is trivial, it suffices to show it is 2-torsion. The cohomology of the sequence 2.2
yields

H1(K/Q, Tder) // H1(K/Q, T) // H1(K/Q, Gm) = 1 ,

where the right equality holds by Hilbert 90. So we have a surjection of H1(K/Q, Tder) onto
H1(K/Q, T). We claim that H1(K/Q, T) is 2-torsion; it suffices so show that H1(K/Q, Tder) is.

Taking the cohomology of the following sequence where the middle term is cohomologically triv-
ial,

1 // R(1)
K/K+Gm // RK/K+Gm

NK/K+
// Gm // 1 ,

we have H1(K/K+, R(1)
K/K+Gm) ∼= Ĥ0(K/K+, Gm) = (K+)×/NK/K+K×.

This gives us

H1(K/Q, Tder) = H1(K/Q, RK/QR(1)
K/K+Gm) = H1(K/K+, R(1)

K/K+Gm) ∼= (K+)×/NK/K+K×.

This group is 2-torsion, hence so is H1(K/Q, T) and X1(T) is a subgroup of the latter. We can
conclude that X(T) is a 2-torsion group of odd order, hence it is trivial.

We can conclude using A.3 that τT = 1
1 = 1.

Note that one need not use corollary A.5 to know that X1(T) has odd order and hence is trivial.
Indeed, given that the extension K/K+ is quadratic, by the Chebotarev density theorem, we know
that there is a prime p ∈ K+ inert in the extension K/K+. Since p is stable under ι, which is of
order 2, then its decomposition group Γ(p) has even order, and therefore odd index in Γ. Now it
suffices to look at the restriction-corestriction sequence H1(Γ, T) → H1(Γ(p), T) → H1(Γ, T). The
composition of the two maps is just multiplication by n = [Γ : Γ(p)]. By definition of X1(T), this
subgroup of H1(Γ, T) is killed by the restriction map, hence it is n-torsion, and we know n is odd,
as desired. �

A.4. The case K/Q cyclic.

Lemma A.8. When K is cyclic, we have τ(T) = 1
1 = 1. In particular, this holds when K+/Q is cyclic of

odd order.

Proof. Write X?(T) = Z[Γ]/L as in (A.3).

By virtue of K being cyclic, the Tate cohomology is 2-periodic so

H1(K/Q, X?(T)) ∼= H2(K/Q, L) ∼= Ĥ0(K/Q, L).

Since L has trivial ι action, we can see it as the augmentation ideal of Z[Γ+], which has no Γ+-fixed
point, as any augmentation ideal. In particular it has no Γ-fixed point and so Ĥ0(K/Q, L) = {0}.
Again using the fact that K is cyclic, we get that X1(T) is trivial. Indeed, by the Chebotarev den-
sity theorem, every cyclic extension has a prime p ∈ Z that will stay inert, and therefore Γ(p) = Γ
where Γ(p) is the corresponding decomposition group. Therefore, the map in the definition of
X1(T) is injective.

We can conclude by Theorem A.3 that τT = 1
1 = 1. �
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A.5. Case g = 2.

Lemma A.9. When g = 2 we have τT = 1 if Γ is cyclic, otherwise τT = 2.

Proof. The first case is a consequence of Lemma A.8. If Γ isn’t cyclic, the only possibility is Γ ∼=
(Z/2Z)2.

In that case, proposition A.6 gives H1(Γ, X?(T)) ∼= Z/2Z. Concerning the Tate-Shafarevich group,
is was shown by Cortella in [Cor97] that X1(T) = {0} if g < 4.

Alternatively, since Γ is abelian, every proper cyclic subgroup appears as decomposition group. In
this specific case, it is a consequence of the Chinese remainder theorem and quadratic reciprocity.
Using SAGE computations (see below), we obtain that the map

H2(Γ, X?(T)) // H2(Z/2Z× {0}, X?(T))⊕ H2({0} ×Z/2Z, X?(T))

is injective, therefore X1(T) = 0. �

A.6. Computing the Tamagawa numbers with SAGE. The second author implemented meth-
ods in SAGE to deal with algebraic tori through their character lattices. Those methods should
eventually be added to SAGE in a future release.

Here we briefly describe the computation of the Tamagawa number which arises in Example 6.4.2,
where K = Q[T]/ f (T) for

f (T) = T3 − 6T7 + 13T6 − 10T5 + T4 − 30T3 + 117T2 − 162T + 81.

We have Γ = Gal(K/Q) = Z/4⊕ 〈ι〉 where ι denotes the complex involution.

Nakayama duality lets us compute the Tamagawa number as a function of the character lattice,

τQ(T) =
|H1(Q, X?(T))|
|X2(X?(T))| .

Let Λ denote X?(T). We build Λ in SAGE by inducing the trivial lattice Z = X?(Gm) to Γ, build
the sublattice of zero sum elements of ι-fixed points, and quotient the former by the latter.

We can compute the first cohomology group by computing cocycles as solutions of linear equa-
tions in Λ|Γ|. However for this example, Proposition A.6 gives us H1(Γ, Λ) = 2. For the denomi-
nator, we build a method that givenH a collection of subgroups of Γ, and a Γ-lattice L, computes

X1
H(L) = Ker

(
H1(Γ, L)→

⊕
∆∈H

H1(∆, L)

)
,

by checking what cocycles restrict to coboundaries on all ∆ ∈ H.

Consider the embedding ϕ : Λ → Z[Γ] ⊗Z Λ (with Γ-action on the left component) via a 7→
∑g∈Γ g⊗ g−1a. We build

Λ′ = Z[Γ]⊗Z Λ/ϕ(Λ).

Since Z[Γ] ⊗Z Λ is induced, it is cohomologically trivial, hence Ĥi(Γ, Λ) = Ĥi−1(Γ, Λ) for all
i ∈ Z. Consequently we have

X1
H(Λ

′) ⊃X1(Λ′) = X2(Λ).
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We takeH to be the list of cyclic subgroups of Γ. They all arise as decomposition groups since Γ is
cyclic. Using the program, we get |X1

H(Λ
′)| = 1 ≥X2(Λ) ≥ 1, hence

τ(T) =
|H1(Γ, Λ)|
|X2(Λ)| =

2
1
= 2.

A.7. The numerator in Ono’s formula: general case. We give some indications for the general
case in which T is described by a CM algebra K =

⊕t
i=1 Ki, each Ki being a CM field. The Rosati

involution on K is still denoted as ι, with fixed subalgebra K+ =
⊕t

i=1 K+
i . In this section we

denote by Γ the absolute Galois group of Q. Our modest aim is to understand
∣∣H1(Γ, X?(T))

∣∣
through Kottwitz’s isomorphism (see [Kot84a] (2.4.1) and §2.4.3):

H1(Γ, X?(T))∼=π0(T̂Γ),

where T̂ is the dual C-torus. This isomorphism is valid for all tori.

To describe X?(T), we first write T as

T = (Gm × Tder)
/
{(z, z) : z ∈ µ2} , µ2 := {±1}.

Choose a subset Φ =
⊔t

i=1 Φi of HomQ-alg(K, Q), such that Φi ⊂ HomQ-alg(Ki, Q) and

HomQ-alg(Ki, Q) = Φi tΦiι

for all i = 1, . . . , t. Note that |Φ| = g. It is well-known that

X?(Tder) =
⊕
φ∈Φ

Zεφ

for some basis {εφ}φ∈Φ. Then Γ permutes {±εφ}φ∈Φ by

(A.10) σεφ =

{
εψ, if σφ = ψ ∈ Φ
−εψ, if σφ = ψι ∈ Φι,

φ, ψ ∈ Φ.

The inclusion µ2 ↪→ Tder corresponds to the map

X?(Tder) � X?(µ2) = Z/2Z

∑
φ∈Φ

xφεφ 7→ ∑
φ∈Φ

xφ mod 2.

Write X?(Gm) = Zη, where η is the standard generator. Applying Cartier duality to the exact
sequence

1→ µ2 → Gm × Tder → T → 1,

we obtain

X?(T) =

{
tη + ∑

φ∈Φ
xφεφ : t + ∑

φ

xφ ∈ 2Z

}
⊂ X?(Gm)⊕ X?(Tder),

a basis of X?(T) : {2η} t
{

η + εφ : φ ∈ Φ
}

.

The element 2η is surely Γ-invariant. On the other hand, for φ, ψ ∈ Φ and σ ∈ Γ, we derive from
(A.10) that

(A.11) σ(η + εφ) =

{
η + εφ, if σφ = ψ ∈ Φ
2η − (η + εψ), if σφ = ψι ∈ Φι.
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The Γ-action on T̂ := X?(T)⊗C×∼=C× × (C×)Φ is thus

σ · (z,

Φ︷ ︸︸ ︷
1, . . . , w︸︷︷︸

φ

, . . . , 1) =


(z, 1, . . . , w︸︷︷︸

ψ

, . . . , 1), if σφ = ψ ∈ Φ

(zw, 1, . . . , w−1︸︷︷︸
ψ

, . . . , 1), if σφ = ψι ∈ Φι.

Recall from the description of X?(Tder) that T̂der can be identified with (C×)Φ. Note that (T̂der)Γ

is finite since Tder is anisotropic.

Lemma A.10. There is a canonical isomorphism (T̂der)Γ∼=µt
2 characterized as follows. For (ai)

t
i=1 ∈ µt

2,
the corresponding t̂ = (t̂φ)φ∈Φ ∈ (T̂der)Γ is specified by

∀1 ≤ i ≤ t, φ ∈ Φi =⇒ t̂φ = ai.

Proof. Shapiro’s lemma reduces the computation of (T̂der)Γ or H1(Γ, X?(T)) to the easy case t = 1
over the base field K+. �

By dualizing 1→ Tder → T → Gm → 1 into 1→ C× → T̂ → T̂0 → 1, then taking Γ-invariants, we
obtain the exact sequence

1→ C× → T̂Γ → (T̂der)Γ.

It induces
π0(T̂Γ) = T̂Γ/C× ↪→ (T̂der)Γ = π0((T̂der)Γ).

For each σ ∈ Γ, set Φ(σ) := {φ ∈ Φ : σφ /∈ Φ}. For each i, set Φi(σ) := Φ(σ) ∩Φi.

Proposition A.11. For any (ai)i ∈ µt
2, the corresponding element t̂ ∈ (T̂der)Γ belongs to the image of

T̂Γ/C× if and only if
A(a1, . . . , at; σ) := ∑

1≤i≤t
ai=−1

|Φi(σ)| ∈ 2Z

for all σ ∈ ΓF.

Proof. Identify T̂der with (C×)Φ. Identify T̂ with C× × (C×)Φ using the basis {2η} t {η + εφ : φ ∈
Φ} of X?(T); the homomorphism T̂ → T̂der is simply the projection.

Note that t̂ is the image of (1, t̂) ∈ T̂. It comes from T̂Γ/C× if and only if (1, t̂) (or any other
preimage) is Γ-invariant. For all σ ∈ Γ, Lemma A.10 and the description (A.11) lead to

σ · (1, t̂) =
(
(−1)A(a1,...,at;σ), t̂

)
.

The assertion follows at once. �

To illustrate the use of proposition A.11, we prove the following

Proposition A.12. If t = 1 and g is odd, then H1(Γ, X?(T))∼=π0(T̂Γ) is trivial.

Proof. It suffices to show A(−1, . . . ,−1; c) = |Φ(c)| /∈ 2Z where c ∈ Γ is the complex conjugation.
Indeed, cφ = φι for all φ ∈ Φ by generalities on CM fields, hence Φ(c) = Φ has g elements, which
is odd. �
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Note that K is not assumed to be Galois over Q.

Kottwitz’s theory also relates Tate–Shafarevich groups to similar objects attached to dual tori; see
§4 of [Kot84a]. Nevertheless, we are not yet able to determine the Tate–Shafarevich group of T by
this approach in the non-Galois case.
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