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Preface

This book aims to give an introduction to using GAP with material appropriate for an undergraduate
abstract algebra course. It does not even attempt to give an introduction to abstract algebra —there
are many excellent books which do this.

Instead it is aimed at the instructor of an introductory algebra course, who wants to incorporate
the use of GAP into this course as an calculatory aid to exploration.

Most of this book is written in a style that is suitable for student handouts. (However sometimes
explanation of the systems behavior requires mathematics beyond an introductory course, and some
sections are aimed primarily to the instructor as an aid in setting up examples and problems.)
Instructors are welcome to copy the respective book pages or to create their own handouts based
on the LATEX-Source of this book.

Each chapter ends with a section containing problems that are suitable for use in class, together
with solutions of the GAP-relevant parts. I am grateful to Kenneth Monks and Ellen Ziliak for
preparing these solutions.

The writing of this manual, as well as the implementation of the installer, user interface and
education specific functionality has been supported and enabled by the National Science Foundation
under Grant No. 0633333. We gratefully acknowledge this support. Any opinions, findings and
conclusions or recomendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation (NSF).

Needless to say, you are welcome to use these notes freely for your own courses or students –
I’d be indebted to hear if you found them useful.

One last caveat: Some of the functionality in this book will be available only with GAP4.5 that
I hope will be released early in 2011.

Fort Collins, January 2011
Alexander Hulpke

hulpke@math.colostate.edu
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The Basics

1.1 Installation

Windows

To install GAP, open a web browser and go to www.math.colostate.edu/~hulpke/CGT/education.
html. Click the image shown below.

A file download window will open. Click Save to download the
file GAP4412Setup.exe to your hard drive. Once downloaded, open
the file to begin the installation. You may choose to change the
directory to which it downloads or installs. The default installation
directory is C:\Program Files\. The installer will install GAP it-
self, as well as GGAP, a graphical user interface for the system. A
shortcut to GGAP will be placed on the desktop. Double-click to
begin using GAP!

If you prefer the classical text-based user interface, run the pro-
gram from C:\Program Files\GAP\gap4r4\bin\gap.bat.

Macintosh

To install GAP, open a web browser and go to www.math.
colostate.edu/~hulpke/CGT/education.html. Click the image shown below.

A file download window will open. Click Save to download the
file GAP4.4.12a.mpkg.zip to your hard drive. Once downloaded,
open the file to begin the installation. You may choose to change the
directory to which it downloads or installs. The default installation
directory is /Applications/. The installer will install GAP itself
(as gap4r4 and the graphical interface GGAP. (Note: Some users
have reported problems with FileVault)

You can start GAP using GGAP. If you prefer the
classical text-based user interface, run the program from
/Applications/GAP/gap4r4/bin/gap.sh.
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Linux

GAP compiles via a standard configure/make process. It will simply reside in the directory in
which it was unpacked. More details can be found on the web at www.gap-system.org. The GGAP
interface can be compiled similarly.

1.2 The GGAP user interface

Once GGAP is started, it will open a worksheet for user interaction with GAP. The top of the window
is occupied by a toolbar as shown in the following illustration. A flashing cursor will appear next
to the prompt, shown as the > symbol. One may type commands to be evaluated by GAP using
the keyboard. A command always ends with a semicolon, the symbol ;. Press Enter to get GAP to
evaluate what you have typed and return output.

Text that has been entered may be highlighted using the mouse and cut, copied, and pasted
using the commands under the Edit menu or the standard keyboard shortcuts for these tasks.

In contrast to the traditional, terminal-based interface, GGAP only shows a prompt >. Examples
in this book still show the gap> prompt; users of GGAP are requested to ignore this.

Workspaces and Worksheets

The GGAP interface offers two ways to save (and load) a system session. They are available via the
‘File/Save’ and ‘File/Open’ menus.

Saving a Workspace (the default) saves the complete system state, including the display and
all user defined variables. After loading a workspace one can immediately continue an existing
calculation at the point one left off.

Workspace files end with the suffix .gwp. Their size is comparable to the amount of memory
allocated by the system, which easily can be tens or hundreds of megabytes. Workspace files are
not necessarily compatible between different architectures or versions of GAP.

Saving a Worksheet only saves the text (the system commands, and their output) displayed
on the screen. The actual objects defined are not saved and one would have to redo all commands
to create the objects again.

Worksheet files end with the suffic .gws. As they only save some lines of text, their size is small.
They are portable between different versions and architectures of the system.

8
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1.3 Basic System Interaction

As most computer algebra systems, GAP is based on a “read–eval–print” loop: The system takes
in user input, given in text form, evaluates this input (which typically will do calculations) and
then prints the result of this calculation. An easy programming language allows for user-created
automatization.

To get GAP to evaluate a command and return the output, type your command next to the
prompt >. The command must end with a semicolon. Then press the Enter key.

For example, if we would like to get GAP to do some basic arithmetic for us, we could type:

Then we press the Enter key and GAP evaluates our expression, prints the answer, and gives
us a new prompt:

As expected, it has added 1 to 1728, returning 1729. From now on, examples will be given
simply by showing the text input and output and not the whole GGAP window.

A handout in section 1.7 describes basic functionality, much of which will be described in more
detail in the following chapters. Some further details are in the following sections.

Comparisons

Some basic data types are included in GAP. Integers as shown above are built-in. Boolean values,
represented by the words true and false are also built into the language. The equals sign = tests
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whether or not two expressions are the same.

gap> 8 = 9;
false
gap> 1^3+12^3 = 9^3+10^3;
true

The boolean operations and, or, and not are frequently useful. For example:

gap> not (8 = 9 and 2 < 3);
true

Variables and Assignment

Any object (or system result) can be stored in a variable. A variable can be thought of as a name
which points to a particular object that has been computed. The user may pick any name that
is not already a reserved word for the system. The assignment operator is a colon followed by an
equals sign, the symbols :=. Once the data is stored in the variable, the variable name may be used
in place of the data. For example:

gap> FirstPerfectNumber:=6;
6
gap> 22+FirstPerfectNumber;

Notice that the GAP language is not typed and (thanks to a built-in garbage-collector) does not
require the declaration of the types of variables.

Functions

A function takes as input one or more arguments and may return some output. GAP has many
built-in functions. For example, IsPrime takes an integer as its single argument and returns a
boolean value, true to indicate the integer is prime and false to indicate it is not.

gap> IsPrime(2^13-1);
true

Many many more functions are built into GAP. For information on these, consult the GAP help
file by typing a question mark followed by the name of the function, or in GGAP click Help on the
menu bar.

Additionally, you can define new functions. A function can be defined by writing the word
function followed by the arguments and ends with the word end. The word return will return
output. For example we can make a function that adds one to an integer:

gap> AddOne:=function(x) return x+1; end;
function( x ) ... end
gap> AddOne(5);
6
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A useful shortcut is to type the input followed by an arrow, written with a minus sign and a
caret ->, followed by the output. This has the same effect.

gap> AddOne:=(x->x+1);
function( x ) ... end
gap> AddOne(5);
6

Lists

One can group several pieces of data together into one package containing all the data by creating a
list. A list is started with a left square bracket, [, ended with a right square bracket, ], and entries
are separated by commas.

The command Length returns the number of entries.
The very simplest list is an empty list:

gap> L:=[];
[ ]
gap> Length(L);
0

To access a particular entry in a list, square brackets are placed around a number after the list,
1 for the first entry, 2 for the second, and so on. Here we create a list and retrieve the sixth entry:

gap> L:=[2,3,5,7,11,13,17];
[ 2, 3, 5, 7, 11, 13, 17 ]
gap> L[6];
13

The same notation can be used to assign entries in a list

gap> L[4]:=1;
1
gap> L;
[ 2, 3, 5, 1, 11, 13, 17 ]

Membership in a list can be tested via x in L, the command Position(L,x) will return the
index of the first occurrence of x in L.

gap> 4 in L;
false
gap> 1 in L;
true
gap> Position(L,1);
4

The command Add(L,x) adds the object x to the list L (in the new last position), Append(L,L2)
adds all elements of the list L2.
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gap> Add(L,-5);
gap> L;
[ 2, 3, 5, 1, 11, 13, 17, -5 ]
gap> Append(L,[4,3,99,0]);
gap> L;
[ 2, 3, 5, 1, 11, 13, 17, -5, 4, 3, 99, 0 ]

Lists can contain arbitrary objects, in particular they can contain again lists as entries.

The {} braces can be used to create subsets of a list, given by a list of index positions:

gap> L{[3,5,8]};
[ 5, 11, -5 ]

A special case of lists are ranges that can be used to store arithmetic progressions in a compact
form. The syntax is [start..end] for increments of 1, respectively [start,second..end] for
increments of size second-start. In the folowing example, the surrounding List(...,x->x); is
there purely to force GAP to unpack these compact objects:

gap> List([1..10],x->x);
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
gap> List([5..12],x->x);
[ 5, 6, 7, 8, 9, 10, 11, 12 ]
gap> List([5..3],x->x);
[ ]
gap> List([5,9..45],x->x);
[ 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45 ]
gap> List([10,9..1],x->x);
[ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]
gap> List([10,9..9],x->x);
[ 10, 9 ]
gap> L{[2..7]};
[ 3, 5, 1, 11, 13, 17 ]

Lists themselves are pointers to lists – assigning a list to two variables does not make a copy
and changing one of the lists will change the other. You can make a new list wityh the same sntries
using ShallowCopy.

gap> a:=[1,2,3];
[ 1, 2, 3 ]
gap> b:=a;
[ 1, 2, 3 ]
gap> c:=ShallowCopy(a);
[ 1, 2, 3 ]
gap> a[2]:=4;
4
gap> a;b;c;
[ 1, 4, 3 ]
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[ 1, 4, 3 ]
[ 1, 2, 3 ]

Vectors and Matrices

Vectors in GAP are simply lists of field elements and matrices are simply lists of their row vectors,
i.e. lists of lists. (Thus matrix entries can be accessed as M[row][column].)

While vectors in GAP are usually considered as row vectors, scalar products or matrix/vector
products automatically consider the second factor as column vector.

gap> vec:=[-1,2,1];
[ -1, 2, 1 ]
gap> M:=[[1,2,3],[4,5,6],[7,8,9]];
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
gap> vec*M;
[ 14, 16, 18 ]
gap> M*vec;
[ 6, 12, 18 ]
gap> M[3][2];
8
gap> vec*vec; # inner product
6

The operation Display can be used to print a matrix in a nicely formatted way.

gap> Display(M);
[ [ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ] ]

Matrices and vectors occurring in algorithms are often made immutable, i.e. locked against
changing entries. (This is made to enable GAP to store certain properties without risking that an en-
try change would modify the property.) If it is desired to change the entries ShallowCopy(vector )
or MutableCopyMat(matrix ) returns a duplicate object that can be modified.

An example of why this is desirable is seen by the fact that a matrix, being just a list of its
rows, does not copy the rows. Thus for example, assigning the same row to two matriced (or to
the same matrix twice), and then changing this row will change both matrices!

gap> row:=[1,0];
[ 1, 0 ]
gap> mat1:=[row,[0,1]];
[ [ 1, 0 ], [ 0, 1 ] ]
gap> mat2:=[row,[0,1]]; # first row is identical, second just equal
[ [ 1, 0 ], [ 0, 1 ] ]
gap> mat1[2][1]:=3;;mat1;mat2;
[ [ 1, 0 ], [ 3, 1 ] ]
[ [ 1, 0 ], [ 0, 1 ] ]
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gap> mat1[1][2]:=5;;mat1;mat2;
[ [ 1, 5 ], [ 3, 1 ] ]
[ [ 1, 5 ], [ 0, 1 ] ]

Further linear algebra functionality is decribed in chapter ??.

Sets and sorted lists

Sorted lists (in general GAP implements a total ordering via < on all its objects, though this ordering
is sometimes nonobvious for more complicated objects) are used to represent sets in GAP. For a list
L, the command Set(L) will return a sorted copy. Element test in sets also used the in operator,
but internally then can use binary search for a notable speedup. The same holds for Position.

Maintaining the set property, AddSet(L,x) will insert x into L at the appropriate position to
maintain sortedness. Union(L,L2) and Intersection(L,L2) perform the set operations indicated
by their name, Difference(L,L2) is the set theoretic difference.

gap> L:=Set([5,2,8,9,-3]);
[ -3, 2, 5, 8, 9 ]
gap> AddSet(L,4);L;
[ -3, 2, 4, 5, 8, 9 ]
gap> Union(L,[3..6]);
[ -3, 2, 3, 4, 5, 6, 8, 9 ]
gap> Intersection(L,[3..6]);
[ 4, 5 ]
gap> Difference(L,[3..6]);
[ -3, 2, 8, 9 ]

List operations

GAP contains powerful list operations that often can be used to implement simple programming
tasks in a single line. The typical format for these operations is to give as arguments a list L and a
function func that is to be applied to the entries. These functions often are given in the shorthand
form x->expr(x), where expr(x ) is an arbitrary GAP expression, involving x .

List(L ,func ) applies func to all entries of L and returns the list of results.

Filtered(L ,func ) returns the list of those elements of L , for which func returns true.

Number(L ,func ) returns the number of elements of L , for which func returns true.

gap> List([1..10],x->x^2);
[ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 ]
gap> Filtered([1..10],IsPrime);
[ 2, 3, 5, 7 ]
gap> Number([1..10],IsPrime);
4

(Note in the first example the function x->x^2 which is such an inline function)
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gap> x->x^2;
function( x ) ... end
gap> Print(last);
function ( x )
return x ^ 2;

end

First(L ,func ) returns the first element of L for which func returns true.

ForAll(L ,func ) returns true if func returns true for all entries of L .

ForAny(L ,func ) similarly returns true if func returns true for at least one entry of L .

Collected(L) returns a statistics of the elements of L in form of a list with entries [object,count].

Sum(L) takes the sum of the entries of L. The variant Sum(L ,func ) sums over the results of func ,
applied to the entries of L .

Product(L) takes the product of the entries of L. Again Product(L ,func ) applies func to the
entries of L first.

gap> First([1000..2000],IsPrime);
1009
gap> ForAll([1..10],IsPrime);
false
gap> ForAny([1..10],IsPrime);
true
gap> Collected(List([1..100],IsPrime));
[ [ true, 25 ], [ false, 75 ] ]
gap> Sum([1..10]);
55
gap> Sum([1..10],x->x^2);
385

Combining these list operations allows for the implementation of small programs. For example,
the following commands calculate the first 13 Mersenne numbers, and test which of these are prime.

gap> L:=List([1..13],x->2^x-1);
[ 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191 ]
gap> Filtered(L, IsPrime );
[ 3, 7, 31, 127, 8191 ]

The same can be accomplished in a single command:

gap> Filtered(List([1..13],x->2^x-1),IsPrime);
[ 3, 7, 31, 127, 8191 ]

Here we determine a statistics of the last digits of
∑n
i=1 i

2 for n ≤ 100:
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gap> Collected(List([1..100],n->Sum([1..n],i->i^2) mod 10));
[ [ 0, 30 ], [ 1, 10 ], [ 4, 10 ], [ 5, 30 ], [ 6, 10 ], [ 9, 10 ] ]

For a more involved example, the following construct finds all Carmichael numbers 1 < n ≤ 2000
(i.e. those non-primes n such that bn−1 ≡ 1 (mod n)∀b < n : gcd(b, n) = 1).

gap> Filtered( Filtered([2..2000],n->not IsPrime(n)),
> n->ForAll( Filtered([2..n-1],b->Gcd(b,n)=1),
> b->b^(n-1) mod n=1) );
[ 561, 1105, 1729 ]

Basic Programming

GAP includes the basic control structures found in almost any other programming language: loops
and conditional statements.

The basic loop is a for loop. Typically it will repeat some instructions as a variable iterates
through all members of a list. The instructions begin with the word do and end with od. To continue
with the example above, suppose we wanted to look at the number of divisors of some Mersenne
numbers:

gap> for i in [1..13] do Print("The number of divisors
of 2^",i,"-1 is ",Length(DivisorsInt(2^i-1)),"\n"); od;

The number of divisors of 2^1-1 is 1
The number of divisors of 2^2-1 is 2
The number of divisors of 2^3-1 is 2
The number of divisors of 2^4-1 is 4
The number of divisors of 2^5-1 is 2
The number of divisors of 2^6-1 is 6
The number of divisors of 2^7-1 is 2
The number of divisors of 2^8-1 is 8
The number of divisors of 2^9-1 is 4
The number of divisors of 2^10-1 is 8
The number of divisors of 2^11-1 is 4
The number of divisors of 2^12-1 is 24
The number of divisors of 2^13-1 is 2

In this case, the variable i is iterating over the numbers from 1 to 13. Notice the Print command
and the linebreak \n are used to make the output more readable and to force the system to send
the printed line to the screen.

A conditional statement begins with if, followed by a boolean, the word then, and a set of
instructions, and is finished with fi. The instructions are executed if and only if the boolean
evaluates to true. Additional conditions and instructions may be given with the elif (with further
conditions) and else (with no further conditions) commands. For example (one can move input to
the next line without evaluating by pressing Shift+Enter):

gap> PerfectNumber:=function(n)
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local sigma;
sigma:=Sum(DivisorsInt(n));
if sigma>2*n then

Print(n," is abundant\n");
elif sigma = 2*n then

Print(n," is perfect\n");
else

Print(n," is deficient\n");
fi;

end;
function( n ) ... end
gap> PerfectNumber(6);

6 is perfect

Note that the functions Sum and DivisorsInt are built-in to GAP.
As a general tip, if a conditional statement is going to be applied to several pieces of data, it is

usually easier to write a function that returns a boolean value and then use the Filtered command
rather than combining loops and conditionals.

1.4 File Operations

For documenting system interactions, transferring results, as well as for preparing programs in a
file, it is convenient to have the system read from or write to files. Such files typically will be plain
text files, though GAP itself does not insist on using a specific suffix to indicate the format.

Files and Directories

A filename in GAP is simply a string indicating the location of the file, such as

/Users/xyrxmir/Documents/gapstuff/myprogram
/cygdrive/c/Documents and Settings/Administrator/Desktop/myprogram

We note that – regardless of the operating system convention – directories in a path are always
separated by a forward slash /, also under Windows – an inheritance of the cygwin environment
used to run GAP – a drive letter X: is replaced by /cygdrive/x/, i.e. /cygdrive/c/ is the root
directory of the system drive.

Directories are simply shortcuts to particular paths. A directory is created by Directory(path ).
Then Filename(directory ,filename ) simply produces a string eading with the path of directory .
(filename does not need to be a simple file, but actually could include further subdirectories.) Nei-
ther Directory, nor Filename check whether the file exists.

gap> dir:=Directory("/Users/xyrxmir/gapstuff");
dir("/Users/xyrxmir/gapstuff/")
gap> Filename(dir,"stuff");
"/Users/xyrxmir/gapstuff/stuff"
gap> Filename(dir,"stuffdir/one");
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"/Users/xyrxmir/gapstuff/stuffdir/one"

Working directories

One difficulty is that these accesses typically act by default on the folder from which GAP was
started. When working from a shell, this can easily be arranged to be th working directory. When
running GGAP however, it typically ends up a system or program folder, to which the user might
not even have access.

It therefore can be crucial to specify suitable directories. Alas specifying the Desktop or user
home folder can be confusing (in particular under Windows), which is where the following two
functions come into play.

DirectoryHome() returns the user’s home directory. Under Unix this is simply the home folder
denoted by ~user in the shell, under Windows this is the user’s My Documents directory1.

gap> DirectoryHome();
dir("/Users/xyrxmir/")
gap> DirectoryDesktop();
dir("/Users/xyrxmir/Desktop/")

or on a Windows system for example:

DirectoryHome();
dir("/cygdrive/c/Documents and Settings/Administrator/My Documents/")
DirectoryDesktop();
dir("/cygdrive/c/Documents and Settings/Administrator/Desktop/")

Similarly DirectoryDesktop() returns the user’s “Desktop” folder, which under Unix or OSX
is defined to be the Desktop directory in the home directory.

At the moment these two functions are in a separate file mydirs.g which needs to be read in first.
To avoid a bootstrap issue with directory names, it is most convenient to put this file in GAP’s library
folder ( /Applications/gap4r4/lib under OSX, respectively /Program Files/GAP/gap4r4/lib
under Windows) to enable simple reading with ReadLib("mydirs.g");

See also section ?? on how to configure automatic reading of functions.

Input and Output

The command PrintTo(filename ,...) works like Print, but prints the output in the file specified
by filename . The file is created if it did not exist before and any existing file is overwritten.

AppendTo(filename ,...) does the same, but appends the output to an existing file.

GAP can read input using the Read(filename ) command. The contents of the file are read in
as if the contents were typed into the system (just not printing out the results of commands).
In particular, to read in objects to GAP it is necessary to have lines start with a variable assignment
and end with a semicolon. As with typing, line breaks are typically not relevant.

1or the appropriately named folder in other language versions of Windows. Please be advised that these names
are currently hardcoded into the system and GAP might not support all non-english languages in this yet.
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The most frequent use of Read is to prepare GAP programs in a text editor and then read them
into the system – this provides far better editing facilities than trying to write the program directly
in the system, see ‘File Input’ below.

A special form of output is provided by the commands LogTo(filename ), LogInputTo(filename ),
and LogOutputTo(filename ), which produce a transcript of a system session (respectively only
input or output) to the specified file.

logfile:=Filename(DirectoryDesktop(),"mylog");
"/cygdrive/c/Documents and Settings/Administrator/Desktop/mylog"
LogTo(logfile);

Logging can be stopped by giving no argument to the function.

There are other commands which allow even binary file access, they are described in the refence
manual chapter on streams.

File Input

Often one wants to write more complicated pieces of code and save them for use later. In this
situation it is useful to use your favorite text editor to create a file that GAP can then read.
(Caveat: The file must be a plain text file, often denoted by a suffix .txt Programs that can create
such files are Notepad under Windows and TextEdit under OSX. If you use Word, make sure you
use ‘Save As’ to save as a plain text file.)

Files can be saved elsewhere, but then either the relative path from the root directory or the
absolute path must be typed into the Read command.

For example, one can save our function from above by typing the following text using a text
editor as PerfectNumbers.g in ones home directory:

PerfectNumber:=function(n)
local sigma;
sigma:=Sum(DivisorsInt(n));
if sigma>2*n then

Print(n," is abundant");
elif sigma = 2*n then

Print(n," is perfect");
else

Print(n," is deficient");
fi;

end;

Now any time we run GAP, we can type the command:

gap>Read(Filename(DirectoryHome(),"PerfectNumbers.g"));

Though GAP doesn’t return anything, it has read our text file and now “knows” the function
we defined. We can now use the function as if we had defined it right in our worksheet.
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gap>Read("PerfectNumbers.g");

gap> PerfectNumber(6);
6 is perfect

1.5 Renaming Objects

(This feature will be available only in GAP 4.5).
When introducing new concepts it can be useful to hide any complexity of an object behind a

name (assuming that the object is set up in a file read in by the student which hides all technicalities
from her).

A typical example would be the introduction of the first example of a group, in which the
elements have particular names. The easiest way to deal with this situation is to define the objects
(and thus their multiplication) via one of GAP’s standard representation, but then simply give a
printing name to the object.

Such display names can be defined by the function SetNameObject. If a is any GAP object,
SetNameObject(a,"namestring"); will cause any occurrence of this object to be displayed as
namestring.

gap> SetNameObject(4,"four");
gap> List([1..5],x->x^2);
[ 1, four, 9, 16, 25 ]

This change of course is restricted to the display, as the object stays the same – setting a name
thus will not affect any calculations.

Section 3.3 contains a more involved example of using this feature in creating a group whose
objects are (to the student) simply given by names.

Note that setting a printing name will not automatically define the corresponding variable.
Also the change of name only arises in View (the default function used to display objects after a
command) and not in an explicit Print.

The implementation of this feature relies on checking any object to be displayed in a table for
it haveing been given a particular name. Naming more than a few dozen objects thus could lead to
a notable slowdown.

1.6 Teaching Mode

Some of the internal workings of GAP are not obvious and the representation of certain objects
can only be understood with a substantial knowledge of algebra. Still, often there is an easier
understood (just not as efficient) representation of such objects that is feasible for beginning users.

Similarly, GAP is lacking routines for certain mathematical properties, because the only known
algorithms are very naive, run slowly and scale badly; or because the results for all but trivial
examples would be so large to be practically meaningless. Still, trivial examples can be meaningful
in a teaching context.

To enable this kind of functionality, GAP offers a teaching mode. It is turned on by the command
TeachingMode(true); Once this is done, GAP simplifies the display of certain objects (potentially
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at the cost of making the printing of objects more expensive); it also enables naive routines for
some calculations.

This book will describe these modifications in the context of the topics.

1.7 Handouts

Introduction to GAP

Note: This handout contains many section, not all relevant for every course. Cut as needed.

You can start GAP with the ggap icon (in Windows on the desktop, under OSX in the Applications
folder), under Unix you call the gap.sh batch file in the gap4r4/bin directory. The program will
start up and you will get window into which you can input text at a prompt >. We will write this
prompt here as gap> to indicate that it is input to the program.

gap>

You now can type in commands (followed by a semicolon) and GAP will print out the result.
To leave GAP you can either call quit; or close the window.
You should be able to use the mouse and cursor keys for editing lines. (In the text version

under Unix, the standard EMACS keybindings are accepted.) Note that changing prior entries in
the worksheet does not change the prior calculation, but just executes the same command again.
If you want to repeat a sequence of commands, pasting the lines in is a better approach.

You can use the online help with ? to get documentation for particular commands.

gap> ?gcd

A double question mark ?? checks for keywords or parts of command names. If multiple sections
apply GAP will list all of them with numbers, one can simply type ?number to get a particular
section.

gap> ??gcd
Help: several entries match this topic (type ?2 to get match [2])
[1] Reference: Gcd
[2] Reference: Gcd and Lcm
[3] Reference: GcdInt
[4] Reference: Gcdex
[5] Reference: GcdOp
[6] Reference: GcdRepresentation
[7] Reference: GcdRepresentationOp
[8] Reference: TryGcdCancelExtRepPolynomials
[9] GUAVA (not loaded): DivisorGCD
gap> ?6

You might want to create a transcript of your session in a text file. You can do this by issuing
the command LogTo(filename ); Note that the filename must include the path to a user writable
directory. Under Windows
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• Paths are always given with a forwards slash (/), even though the operating system uses a
backslash.

• Instead of drive letters, the prefix /cygdrive/letter is used, e.g. /cygdrive/c/ is the main
drive.

• It can be convenient to use DirectoryDesktop() or DirectoryHome() to create a file on the
desktop or in the My Documents folder.

LogTo("mylog")
LogTo("/cygdrive/c/Documents and Settings/Administrator/My Documents/logfile.txt");
LogTo(Filename(DirectoryDesktop(),"logfile.txt"));

You can end logging with the command

LogTo();

Some general hints:

• GAP is picky about upper case/lower case. LogTo is not the same as logto.

• All commands end in a semicolon.

• If you create larger input, it can be helpful to put it in a text file and to read it from GAP. This
can be done with the command Read("filename"); – the same issues about paths apply.

• By terminating a command with a double semicolon ;; you can avoid GAP displaying the
result. (Obviously, this is only useful if assigning it to a variable.)

• everything after a hash mark (#) is a comment.

We now do a few easy calculations. If you have not used GAP before, it might be useful to do
these on the computer in parallel to reading.

Integers and Rationals GAP knows integers of arbitrary length and rational numbers:

gap> -3; 17 - 23;
-3
-6
gap> 2^200-1;
1606938044258990275541962092341162602522202993782792835301375
gap> 123456/7891011+1;
2671489/2630337

The ‘mod’ operator allows you to compute one value modulo another. Note the blanks:

gap> 17 mod 3;
2

GAP knows a precedence between operators that may be overridden by parentheses and can compare
objects:
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gap> (9 - 7) * 5 = 9 - 7 * 5;
false
gap> 5/3<2;
true

You can assign numbers (or more general: every GAP object) to variables, by using the assignment
operator :=. Once a variable is assigned to, you can refer to it as if it was a number. The special
variables last, last2, and last3 contain the results of the last three commands.

gap> a:=2^16-1; b:=a/(2^4+1);
65535
3855
gap> 5*b-3*a;
-177330
gap> last+5;
-177325
gap> last+2;
-177323

The following commands show some useful integer calculations related to quotient and remain-
der:

gap> Int(8/3); # round down
2
gap> QuoInt(76,23); # integral part of quotient
3
gap> QuotientRemainder(76,23);
[ 3, 7 ]
gap> 76 mod 23; # remainder (note the blanks)
7
gap> 1/5 mod 7;
3
gap> Gcd(64,30);
2
gap> rep:=GcdRepresentation(64,30);
[ -7, 15 ]
gap> rep[1]*64+rep[2]*30;
2
gap> Factors(2^64-1);
[ 3, 5, 17, 257, 641, 65537, 6700417 ]

Lists Objects separated by commas and enclosed in square brackets form a list.
Any collections of objects, including sets, are represented by such lists. (A Set in GAP is a

sorted list.)

gap> l:=[5,3,99,17,2]; # create a list
[ 5, 3, 99, 17, 2 ]

23



gap> l[4]; # access to list entry
17
gap> l[3]:=22; # assignment to list entry
22
gap> l;
[ 5, 3, 22, 17, 2 ]
gap> Length(l);
5
gap> 3 in l; # element test
true
gap> 4 in l;
false
gap> Position(l,2);
5
gap> Add(l,17); # extension of list at end
gap> l;
[ 5, 3, 22, 17, 2, 17 ]
gap> s:=Set(l); # new list, sorted, duplicate free
[ 2, 3, 5, 17, 22 ]
gap> l;
[ 5, 3, 22, 17, 2, 17 ]
gap> AddSet(s,4); # insert in sorted position
gap> AddSet(s,5); # and avoid duplicates
gap> s;
[ 2, 3, 4, 5, 17, 22 ]

Results that consist of several numbers typically are represented as a list.

gap> DivisorsInt(96);
[ 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 ]
gap> Factors(2^126-1);
[ 3, 3, 3, 7, 7, 19, 43, 73, 127, 337, 5419, 92737, 649657, 77158673929 ]

There are powerful list functions that often can save programming loops: List, Filtered,
ForAll, ForAny, First. They take as first argument a list, and as second argument a function to
be applied to the list elements or to test the elements. The notation i -> xyz is a shorthand for a
one parameter function.

gap> l:=[5,3,99,17,2];
[ 5, 3, 99, 17, 2 ]
gap> List(l,IsPrime);
[ true, true, false, true, true ]
gap> List(l,i -> i^2);
[ 25, 9, 9801, 289, 4 ]
gap> Filtered(l,IsPrime);
[ 5, 3, 17, 2 ]
gap> ForAll(l,i -> i>10);
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false
gap> ForAny(l,i -> i>10);
true
gap> First(l,i -> i>10);
99

A special case of lists are ranges, indicated by double dots. They can also be used to create
arithmetic progressions:

gap> l:=[10..100];
[ 10 .. 100 ]
gap> Length(l);
91

Polynomials To create polynomials, we need to create the variable first. Note that the name we
give is the printed name (which could differ from the variable we assign it to). As GAP does not
know the real numbers we do it over the rationals

gap> x:=X(Rationals,"x");
x

If we wanted, we could define several different variables this way. Now we can do all the usual
arithmetic with polynomials:

gap> f:=x^7+3*x^6+x^5+3*x^3-4*x^2-4*x;
x^7+3*x^6+x^5+3*x^3-4*x^2-4*x
gap> g:=x^5+2*x^4-x^2-2*x;
x^5+2*x^4-x^2-2*x
gap> f+g;f*g;
x^7+3*x^6+2*x^5+2*x^4+3*x^3-5*x^2-6*x
x^12+5*x^11+7*x^10+x^9-2*x^8-5*x^7-14*x^6-11*x^5-2*x^4+12*x^3+8*x^2

The same operations as for integers hold for polynomials

gap> QuotientRemainder(f,g);
[ x^2+x-1, 3*x^4+6*x^3-3*x^2-6*x ]
gap> f mod g;
3*x^4+6*x^3-3*x^2-6*x
gap> Gcd(f,g);
x^3+x^2-2*x
gap> GcdRepresentation(f,g);
[ -1/3*x, 1/3*x^3+1/3*x^2-1/3*x+1 ]
gap> rep:=GcdRepresentation(f,g);
[ -1/3*x, 1/3*x^3+1/3*x^2-1/3*x+1 ]
gap> rep[1]*f+rep[2]*g;
x^3+x^2-2*x
gap> Factors(g);
[ x-1, x, x+2, x^2+x+1 ]
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Vectors and Matrices Lists are also used to form vectors and matrices:
A vector is simply a list of numbers. A list of (row) vectors is a matrix. GAP knows matrix

arithmetic.

gap> vec:=[1,2,3,4];
[ 1, 2, 3, 4 ]
gap> vec[3]+2;
5
gap> 3*vec+1;
[ 4, 7, 10, 13 ]
gap> mat:=[[1,2,3,4],[5,6,7,8],[9,10,11,12]];
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ] ]
gap> mat*vec;
[ 30, 70, 110 ]
gap> mat:=[[1,2,3],[5,6,7],[9,10,12]];;
gap> mat^5;
[ [ 289876, 342744, 416603 ], [ 766848, 906704, 1102091 ],
[ 1309817, 1548698, 1882429 ] ]

gap> DeterminantMat(mat);
-4

The command Display can be used to get a nicer output:

gap> 3*mat^2-mat;
[ [ 113, 130, 156 ], [ 289, 342, 416 ], [ 492, 584, 711 ] ]
gap> Display(last);
[ [ 113, 130, 156 ],
[ 289, 342, 416 ],
[ 492, 584, 711 ] ]

Roots Of Unity The expression E(n) is used to denote the n-th root of unity (e
2πi
n ):

gap> root5:=E(5)-E(5)^2-E(5)^3+E(5)^4;;
gap> root5^2;
5

Finite Fields To compute in finite fields, we have to create special objects to represent the
residue classes (Internally, GAP uses so-called Zech Logarithms and represents all nonzero elements
as power of a generator of the cyclic multiplicative group.)

gap> gf:=GF(7);
GF(7)
gap> One(gf);
Z(7)^0
gap> a:=6*One(gf);
Z(7)^3
gap> b:=3*One(gf);
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Z(7)
gap> a+b;
Z(7)^2
gap> Int(a+b);
2

Non-prime finite fields are created in the same way with prime powers, note that GAP automatically
represents elements in the smallest field possible.

gap> Elements(GF(16));
[ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2, Z(2^4), Z(2^4)^2, Z(2^4)^3, Z(2^4)^4,
Z(2^4)^6, Z(2^4)^7, Z(2^4)^8, Z(2^4)^9, Z(2^4)^11, Z(2^4)^12, Z(2^4)^13,
Z(2^4)^14 ]

We can also form matrices over finite fields.

gap> mat:=[[1,2,3],[5,6,7],[9,10,12]]*One(im);
[ [ Z(7)^0, Z(7)^2, Z(7) ], [ Z(7)^5, Z(7)^3, 0*Z(7) ],
[ Z(7)^2, Z(7), Z(7)^5 ] ]

gap> mat^-1+mat;
[ [ Z(7)^4, Z(7)^4, Z(7)^4 ], [ Z(7)^3, Z(7)^0, Z(7)^5 ],
[ Z(7), Z(7)^0, Z(7)^3 ] ]

Integers modulo If we want to compute in the integers modulo n (what we called Zn in the
lecture) without need to always type mod we can create obhjects that immediately reduce their
arithmetic modulo n:

gap> im:=Integers mod 6; # represent numbers for ‘‘modulo 6’’ calculations
(Integers mod 6)

To convert “ordinary” integers to residue classes, we have to multiply them with the“One” of these
residue classes, the command Int converts back to ordinary integers:

gap> a:=5*One(im);
ZmodnZObj( 5, 6 )
gap> b:=3*One(im);
ZmodnZObj( 3, 6 )
gap> a+b;
ZmodnZObj( 2, 6 )
gap> Int(last);
2

(If one wants one can get all residue classes or – for example test which are invertible).

gap> Elements(im);
[ ZmodnZObj(0,6),ZmodnZObj(1,6),ZmodnZObj(2,6),ZmodnZObj(3,6),
ZmodnZObj(4,6),ZmodnZObj(5,6) ]

gap> Filtered(last,x->IsUnit(x));
[ ZmodnZObj( 1, 6 ), ZmodnZObj( 5, 6 ) ]
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gap> Length(last);
2

If we calculate modulo a prime the default output looks a bit different.

gap> im:=Integers mod 7;
GF(7)

(The name GF stands for Galois Field, explanation later.) Also elements display differently. There-
fore it is convenient to once issue the command

gap> TeachingMode(true);

which (amongst others) will simplify the display.

Matrices and Polynomials modulo a prime We can use these rings to calculate in matrices
modulo a number. Display again brings it into a nice form:

gap> mat:=[[1,2,3],[5,6,7],[9,10,12]]*One(im);
[ [ ZmodnZObj( 1, 7 ), ZmodnZObj( 2, 7 ), ZmodnZObj( 3, 7 ) ],
[ ZmodnZObj( 5, 7 ), ZmodnZObj( 6, 7 ), ZmodnZObj( 0, 7 ) ],
[ ZmodnZObj( 2, 7 ), ZmodnZObj( 3, 7 ), ZmodnZObj( 5, 7 ) ] ]

gap> Display(mat);
1 2 3
5 6 .
2 3 5
gap> mat^-1+mat;
[ [ ZmodnZObj( 4, 7 ), ZmodnZObj( 4, 7 ), ZmodnZObj( 4, 7 ) ],
[ ZmodnZObj( 6, 7 ), ZmodnZObj( 1, 7 ), ZmodnZObj( 5, 7 ) ],
[ ZmodnZObj( 3, 7 ), ZmodnZObj( 1, 7 ), ZmodnZObj( 6, 7 ) ] ]

In the same way we can also work with polynomials modulo a number. For this one just needs
to define a suitable variable. For example suppose we want to work with polynomials modulo 2:

gap> r:=Integers mod 2;
GF(2)
gap> x:=X(r,"x");
x
gap> f:=x^2+x+1;
x^2+x+Z(2)^0
gap> Factors(f);
[ x^2+x+Z(2)^0 ]

As 2 is a prime (and therefore every nonzero remainder invertible), we can now work with
polynomials modulo f . The possible remainders now are all the polynomials of strictly smaller
degree (with coefficients suitable reduced):
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gap> o:=One(r);
Z(2)^0
gap> elms:=[0*x,0*x+o,x,x+o];
[ 0*Z(2), Z(2)^0, x, x+Z(2)^0 ]

We can now build addition and multiplication tables for these four objects modulo f :

gap> Display(List(elms,a->List(elms,b->Position(elms,a+b mod f))));
[ [ 1, 2, 3, 4 ],
[ 2, 1, 4, 3 ],
[ 3, 4, 1, 2 ],
[ 4, 3, 2, 1 ] ]

gap> Display(List(elms,a->List(elms,b->Position(elms,a*b mod f))));
[ [ 1, 1, 1, 1 ],
[ 1, 2, 3, 4 ],
[ 1, 3, 4, 2 ],
[ 1, 4, 2, 3 ] ]

Groups and Homomorphisms We can write permutations in cycle form and multiply (or invert
them):

gap> a:=(1,2,3,4)(6,5,7);
(1,2,3,4)(5,7,6)
gap> a^2;
(1,3)(2,4)(5,6,7)
gap> a^-1;
(1,4,3,2)(5,6,7)
gap> b:=(1,3,5,7)(2,6,8);; a*b;

Note: GAP multiplies permutations from left to right, i.e. (1, 2, 3) · (2, 3) = (1, 3). (This might
differ from what you used in prior courses.)

A group is generated by the command Group, applied to generators (permutations or matrices).
It is possible to compute things such as Elements, group Order or ConjugacyClasses.

gap> g:=Group((1,2,3,4,5),(2,5)(3,4));
Group([ (1,2,3,4,5), (2,5)(3,4) ])
gap> Elements(g);
[ (), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5), (1,3)(4,5), (1,3,5,2,4),
(1,4)(2,3), (1,4,2,5,3), (1,5,4,3,2), (1,5)(2,4) ]

gap> Order(g);
10
gap> c:=ConjugacyClasses(g);
[ ()^G, (2,5)(3,4)^G, (1,2,3,4,5)^G, (1,3,5,2,4)^G ]
gap> List(c,Size);
[ 1, 5, 2, 2 ]
gap> List(c,Representative);
[ (), (2,5)(3,4), (1,2,3,4,5), (1,3,5,2,4) ]
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Homomorphisms can be created by giving group generators and their images under the map.
(GAP will check that the map indeed defines a homomorphism first. One can use GroupHomomorphismByImagesNC
to skip this test.)

gap> g:=Group((1,2,3),(3,4,5));;
gap> mat1:=[ [ 0, -E(5)-E(5)^4, E(5)+E(5)^4 ], [ 0, -E(5)-E(5)^4, -1 ],
> [ 1, 1, E(5)+E(5)^4 ] ];;
gap> mat2:=[ [ 1, 0, E(5)+E(5)^4 ], [ -E(5)-E(5)^4, 0, E(5)+E(5)^4 ],
> [ -E(5)-E(5)^4, -1, -1 ] ];;
gap> img:=Group(mat1,mat2);;
gap> hom:=GroupHomomorphismByImages(g,img,[(1,2,3),(3,4,5)],[mat1,mat2]);
[ (1,2,3), (3,4,5) ] ->
[ [[0,-E(5)-E(5)^4,E(5)+E(5)^4],[0,-E(5)-E(5)^4,-1],[1,1,E(5)+E(5)^4]],
[[1,0,E(5)+E(5)^4],[-E(5)-E(5)^4,0,E(5)+E(5)^4],[-E(5)-E(5)^4,-1,-1]] ]

gap> Image(hom,(1,2,3,4,5));
[ [E(5)+E(5)^4,0,1], [E(5)+E(5)^4,1,0], [ -1, 0, 0 ] ]
gap> r:=[ [ 1, E(5)+E(5)^4, 0 ], [ 0, E(5)+E(5)^4, 1 ], [ 0, -1, 0 ] ];;
gap> PreImagesRepresentative(hom,r);
(1,4,2,3,5)

Group Actions The general setup for group actions is to give:

• The acting group

• The domain (this is optional if one calculates the Orbit of a point

• In the case of computing an orbit, the staring point ω

• (There is the option to give group generators and acting images as extra argument. For the
moment just forget it.)

• A function f(ω, g) that is used to compute ωg. If not given the function OnPoints, which
returns ω^g, is used.

Common functions are: Orbit, Orbits, Stabilizer. The function ActionHomomorphism can be
used to compute a homomorphism into SΩ given by the permutation action.

gap> Orbit(g,1);
[ 1, 2, 3, 4 ]
gap> Orbit(g,[1,2],OnSets);
[ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 1, 3 ], [ 1, 4 ], [ 2, 4 ] ]
gap> Orbit(g,[1,2],OnTuples);
[ [ 1, 2 ], [ 2, 3 ], [ 2, 1 ], [ 3, 4 ], [ 1, 3 ], [ 3, 2 ], [ 4, 1 ],
[ 2, 4 ], [ 4, 3 ], [ 3, 1 ], [ 4, 2 ], [ 1, 4 ] ]

gap> Orbits(Group((1,2,3,4),(1,3)(2,4)),Combinations([1..4],2),OnSets);
[ [ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 1, 4 ] ],

[ [ 1, 3 ], [ 2, 4 ] ] ]
gap> Stabilizer(g,1);
Group([ (2,3,4), (3,4) ])
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1.8 Problems

Exercise 1. In mathematics, a common strategy is to use a computer to gather data in small cases,
notice a pattern, and then try to prove things in general once a pattern is found. We will try this
tactic here.

As in the conditional example, a positive integer n is called a perfect number if and only if the
sum of the divisors of n equals 2n, or equivalently the sum of the proper divisors of n equals n.

a) Write a function that takes a positive integer n as input and returns true if n is perfect and
false if n is not perfect.

b) Use your function to find all perfect numbers less than 1000.
c) Notice that all of the numbers you found have a certain form, namely 2n(2n+1− 1) for some

integer n. Are all numbers of this form perfect?
d) By experimenting in GAP, conjecture a necessary and sufficient condition for 2n(2n+1 − 1)

to be a perfect number.
e) Prove your conjecture is correct.
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-

Rings

Many newer abstract algebra courses start with rings in favour of groups. This has the advantage
that the objects one works with initially – integers, rationals, polynomials, prime fields, are known,
or can be easily defined.

Most of these known rings however are infinite and structural information (e.g. units, all ideals)
is either known from theorems, or computationally very hard to infeasible. Initial use of GAP
therefore is likely to be as a tool for arithmetic.

2.1 Integers, Rationals and Complex Numbers

There are several rings which teams will have seen before (and therefore know the rules for arith-
metic), even if they were not designated as ”ring” at that point. GAP implements many of these.

Rationals

The most natural rings are the integers and the rationals. Arithmetic for these rings in GAP is a
rather obvious, rational numbers are represented as quotients of integers in canceled form. GAP
implements integers of arbitrary length, there is no need to worry about data types as different
internal representations are invisible (and unimportant) to the user.

gap> 25+17/29;
742/29
gap> (25+17)/29;
42/29
gap> 2^257-1;
231584178474632390847141970017375815706539969331281128078915168015826259279871

Integers

While the arithmetic for integers is of course the same as the arithmetic for rationals, the Euclidean
ring structure brings division with remainder as further operation.
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gap> QuoInt(230,17);
13
gap> QuotientRemainder(230,17);
[ 13, 9 ]

GAP has a mod operator, that will return the remainder after division. It can be used for integers
(but also other Euclidean rings, such as polynomials). Note that mod has preference over addition,
so parentheses might be needed.

gap> 3*2 mod 5;
1
gap> 2+4 mod 5;
6
gap> (2+4) mod 5;
1

GAP can test primality of integers using IsPrime (the primality test built-in is likely good enough
for any teaching application, though it cannot compete with systems specific to number theory
for extremely huge numbers.) As with all primality tests, the system initially does probabilistic
primality test, which has been verified to be correct only up to some bound (1013 as of the time of
writing), even though no larger counterexample is known. GAP will print a warning, if a number is
considered prime because of this test, but not verified.

Functions NextPrimeInt and PrevPrimeInt return the first prime larger, respectively smaller
than a given number.

The command Factors returns a list of prime factors of an integer. (The package factint,
installed by default, improves the factorization functionality.) Again factorization performance is
likely good enough for teaching applications but not competitive with research problems.

gap> IsPrime(7);
true
gap> IsPrime(8);
false
gap> NextPrimeInt(2^20);
1048583
gap> Factors(2^51-1);
[ 7, 103, 2143, 11119, 131071 ]

2.2 Complex Numbers and Cyclotomics

GAP does not have real or complex numbers. The reason is that exact computation (which GAP
guarantees) with irrationals is in general extremely hard.

GAP however supports cyclotomic fields, and in fact most examples of field extensions encoun-
tered in an introductory course (for example any quadratic extension of the rationals) embed into
an appropriate cyclotomic field. Here E(n) represents a primitive n-th root of unity. If embedding
in the complex numbers is desired, one may assume that E(n) = e

2πi
n = ζn. Thus for example E(4)

is the complex root of −1. The field Q(ζn) is denoted by CF(n).
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The command ComplexConjugate(x) can be used to determine the complex conjugate of a
cyclotomic number.

gap> (2+E(4))^2;
3+4*E(4)
gap> E(3)+E(3)^2;
-1
gap> ComplexConjugate(E(7)^2);
E(7)^5
gap> 1/((1+ER(5))/2);
E(5)+E(5)^4

As the last example shows, apart from small cases such as Z[i] = CF(4), the representation of
cyclotomic elements is not always obvious (the reason is the choice of the basis, which for efficiency
reasons does not only consist of the low powers of a primitive root), though rational results will
always be represented as rational numbers.

Quadratic Extensions of the Rationals

Because any quadratic irrationality is cyclotomic, the function ER(n) represents
√
n as cyclotomic

number.

gap> ER(3);
-E(12)^7+E(12)^11
gap> 1+ER(3);
-E(12)^4-E(12)^7-E(12)^8+E(12)^11
gap> (1+ER(2))^2-2*ER(2);
3

If teaching mode is turned on, the display of quadratic irrationalities utilizes the ER notation,
representing these irrationalities in the natural basis.

gap> 1/(2+ER(3));
2-ER(3)

We will see in the chapter on fields how other field extensions can be represented.

2.3 Greatest common divisors and Factorization

The gcd of two numbers can be computed with Gcd. The teaching function ShowGcd performs the
extended euclidean algorithm, displaying also how to express the gcd as integer linear combination
of the original arguments

gap> Gcd(192,42);
6
gap> ShowGcd(192,42);
192=4*42 + 24
42=1*24 + 18
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24=1*18 + 6
18=3*6 + 0
The Gcd is 6
= 1*24 -1*18
= -1*42 + 2*24
= 2*192 -9*42

6

GcdRepresentation returns a list [s, t] of the the coefficients from the extended euclidean
algorithm.

gap> a:=GcdRepresentation(192,42);
[ 2, -9 ]
gap> a[1]*192+a[2]*42;
6

2.4 Modulo Arithmetic

The mod-operator can be used in general for arithmetic in the quotient ring. When applied to a
quotient of elements, it automatically tries to invert the denominator, using the euclidean algorithm.

gap> 3/2 mod 5;
4

Contrary to systems such as Maple, mod is an ordinary binary operator in GAP and does not
change the calculation done before, i.e. calculating (5+3*19) mod 2 first calculates 5+3*19 over
the integers, and then reduces the result. If intermediate coefficient growth is an issue, arguments
(and intermediate results) have to be reduced always with mod, e.g. (in the most extreme case) (5
mod 2)+((3 mod 2)*(19 mod 2)) mod 2. The function PowerMod(base,exponent,modulus) can
be used to calculate ab mod m with intermediate reduction.

Further Modulo Functionality for Number Theory Courses is described in chapter 6

Checksum Digits

Initial examples for modulo arithmetic often involve checksum digits, and special functions are
provided that perform such calculations for common checksums.

The following functions all accept as input a number, either as integer (though this will not
work properly for numbers with a leading zero!), a string representing an number, a list of digits
(as list), or simply the digits separated by commas. (For own code, the function ListOfDigits
accepts any such input and always returns a list of the digits.)

If a full number, including check digit is given, the check digit is verified and true or false
returned accordingly. If a number without check digit is given, the check digit is computed and
returned.

CheckDigitISBN works for “classical” 10-digit ISBN numbers. As the arithmetic is modulo 11,
an upper case ‘X’ is accepted for check digit 10.

gap> CheckDigitISBN("052166103");
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Check Digit is ’X’
’X’
gap> CheckDigitISBN("052166103X");
Checksum test satisfied
true
gap> CheckDigitISBN("0521661031");
Checksum test failed
false
gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,1);
Checksum test failed
false
gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,’X’); # note single quotes!
Checksum test satisfied
true
gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3);
Check Digit is ’X’
’X’
gap> CheckDigitISBN([0,5,2,1,6,6,1,0,3]);
Check Digit is ’X’
’X’

CheckDigitISBN13 computes the newer ISBN-13. (The relation to old ISBN is to omit the
original check digit, prefix 978 and compute a new check digit with multiplcation factors 1 and 3
only for consistency with UPC bar codes.)

gap> CheckDigitISBN13("978052166103");
Check Digit is 4
4
gap> CheckDigitISBN13("9781420094527");
Checksum test satisfied
true

CheckDigitUPC computes checksums for 12-digit UPC codes as used in most stores.

gap> CheckDigitUPC("071641830011");
Checksum test satisfied
true
gap> CheckDigitUPC("07164183001");
Check Digit is 1
1

CheckDigitPostalMoneyOrder finally works on 11-digit numbers for (US mail) postal money
orders.

gap> CheckDigitPostalMoneyOrder(1678645715);
Check Digit is 5
5
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Similar checksum schemes that check
∑n
i=1 ciai

∼= 0 (mod m) for a number a1, a2, . . . , an
(an being the check digit) and coefficients ci (i.e. for the 10 digit ISBN, the coefficients are
[1, 2, 3, 4, 5, 6, 7, 8, 9,−1]) can be created using the function CheckDigitTestFunction(n,modulus,clist ),
where clist is a list of the ci. This function returns the actual tester function, i.e. CheckDigitISBN
is defined as

CheckDigitISBN:=CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-1]);

2.5 Residue Class Rings and Finite Fields

To avoid any issues with an immediate reduction, in particular in longer calculations, as well as to
recognize zero appropriately, it quickly becomes desirable to use different objects which represent
residue classes of modulo arithmetic. In the case of the integers, such an object can be created also
with the mod operator.

gap> a:=Integers mod 6;
(Integers mod 6)

The elements of this structure are residue classes, for which arithmetic is defined on the represen-
tatives with subsequent reduction:

gap> e[4]+e[6]; #3+5 mod 6
ZmodnZObj( 2, 6 )
gap> e[4]/e[6]; #3/5 mod 6
ZmodnZObj( 3, 6 )

The easiest way to create such residue classes is to multiply a representing integer with the One of
the residue class ring. Similarly Int returns the canonical representative.

gap> one:=One(a);
ZmodnZObj( 1, 6 )
gap> 5*one;
ZmodnZObj( 5, 6 )
gap> Int(10*one);
4

It is important to realize that these objects are genuinely different from the integers. If we compare
with integers, GAP considers them to be different objects. To write generic code, one can use the
functions IsOne and IsZero.

gap> one=1;
false
gap> 0*one=0;
false
gap> IsZero(0*one);
true
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If we work modulo a prime, the display of objects changes. The reason for this is that finite fields
are represented internally in a different format. (Elements are represented as powers of a primitive
element, the multiplicative group of the field being cyclic. This makes multiplication much easier,
addition is done using so-called Zech-logarithms, storing x + 1 for every x.) Still, arithmetic and
conversion work in the same way as described before.

gap> a:=Integers mod 7;
GF(7)
gap> Elements(a);
[ 0*Z(7), Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4, Z(7)^5 ]
gap> 2*one*5*one;
Z(7)
gap> Int(last);
3

As this example shows, the display of an object does not any longer give immediate indication of
the integer representative.

A further advantage of this different representation for finite fields is that it works as well for
non-prime fields. For any prime-power (up to 216) we can create the finite field of that size. GAP
knows about the inclusion relation amongst the fields, and automatically represents elements in the
smallest subfield.

gap> a:=GF(64);
GF(2^6)
gap> Elements(a);
[ 0*Z(2), Z(2)^0, # elements of GF(2)
Z(2^2), Z(2^2)^2, # further elements of GF(4)
Z(2^3), Z(2^3)^2, Z(2^3)^3, Z(2^3)^4, Z(2^3)^5, Z(2^3)^6, #elts of GF(8)
Z(2^6), Z(2^6)^2, Z(2^6)^3, Z(2^6)^4, Z(2^6)^5, Z(2^6)^6, Z(2^6)^7,
... # the rest is elements of GF(64) not in any proper subfield.
Z(2^6)^57, Z(2^6)^58, Z(2^6)^59, Z(2^6)^60, Z(2^6)^61, Z(2^6)^62 ]

Of course only elements of the prime field have an integer correspondent. Other elements can be
identified with different representations for example using minimal polynomials.

Teaching Mode In teaching mode, display of finite field elements defaults to the ZmodnZObj
notation even for prime fields, also converting the result of ZmodnZObj(n,p) internally back to
n*Z(p)^0. Elements of larger finite fields are still displayed in the Z(q) notation.

gap> Elements(GF(9));
[ ZmodnZObj( 0, 3 ), ZmodnZObj( 1, 3 ), ZmodnZObj( 2, 3 ), Z(9)^1, Z(9)^2,
Z(9)^3, Z(9)^5, Z(9)^6, Z(9)^7 ]

2.6 Arithmetic Tables

A basic way to describe the algebraic structure of small objects, in particular when introducing the
topic, is to give an addition and multiplication table.
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The commands ShowAdditionTable(obj ) and ShowMultiplicationTable(obj ) will print
such tables, obj being a list of elements or a structure.

Note that the routines assume that the screen is wide enough to print the whole table. (To make
best use of screen real estate, the routines abbreviate “ZmodnZObj” to “ZnZ” and “{<identity ...>}’’ to ‘‘\verb¡id¿”.)

gap> ShowAdditionTable(GF(3));
+ | ZnZ(0,3) ZnZ(1,3) ZnZ(2,3)
---------+---------------------------
ZnZ(0,3) | ZnZ(0,3) ZnZ(1,3) ZnZ(2,3)
ZnZ(1,3) | ZnZ(1,3) ZnZ(2,3) ZnZ(0,3)
ZnZ(2,3) | ZnZ(2,3) ZnZ(0,3) ZnZ(1,3)

gap> ShowMultiplicationTable(GF(3));
* | ZnZ(0,3) ZnZ(1,3) ZnZ(2,3)
---------+---------------------------
ZnZ(0,3) | ZnZ(0,3) ZnZ(0,3) ZnZ(0,3)
ZnZ(1,3) | ZnZ(0,3) ZnZ(1,3) ZnZ(2,3)
ZnZ(2,3) | ZnZ(0,3) ZnZ(2,3) ZnZ(1,3)

(Caveat: MultiplicationTable is defined separately and returns the table as an integer matrix,
indicating the position of the product in the element list)

Section 2.8 describes how to create a ring from addition and multiplication tables, section 3.7
describes how to create a group from a multiplication table.

2.7 Polynomials

In contrast to systems such as Maple, GAP does not use undefined variables as elements of a
polynomial ring, but one needs to create indeterminates1 explicitly. The polynomial rings in which
these variables live are (implictly) the polynomial rings in countably many indeterminates over
the cylotomics, the algebraic closures of GF(p) or over other rings. These huge polynomial rings
however do not need to be created as objects by the user to enable polynomial arithmetic, though
the user can create certain polynomial rings if she so desires. (GAP actually implements the quotient
field, i.e. it is possible to form rational functions as quotients of polynomials.)

By default variables are labelled with index numbers, it is possible to assign them names for
printing.

Indeterminates are created by the command Indeterminate which is synonymous with the the
much easier to type X.

gap> x:=X(Rationals); # creates an indeterminate (with index 1)
x_1
gap> x:=X(Rationals,2); # creates the indeterminate with index 2
x_2

By specifying a string as the second argument, an indeterminate is selected and given a name.
(Indeterminates are selected from so far unnamed ones, i.e. the first indeterminate that is given a
name is index 1.)

1we will prefer the name “indeterminates”, to indicate the difference to global or local variables

40



gap> x:=X(Rationals,"x");
x
gap> x:=X(Rationals,1); # this is in fact the variable with index 1.
x
gap> y:=X(Rationals,"y");
y

There is no formal requirement to assign indeterminates to variables with the same name, it is good
practice to avoid confusion.

Polynomials then can be created simply from arithmetic in the variables. (Terms will be rear-
ranged internally by GAP to degree-lexicographic ordering to ensure unique storage.)

gap> 5*x*y^5+3*x^4*y+4*x^2*y^7+19;
4*x^2*y^7+5*x*y^5+3*x^4*y+19

There is a potential problem in creating several variables with the same name, as it may not
be clear whether indeed the same variable is meant. GAP therefore will demand explicit indication
of the meaning by specifying old or new as option.

gap> X(Rationals,"x");
Error, Indeterminate ‘‘x’’ is already used.
Use the ‘old’ option; e.g. X(Rationals,"x":old);
to re-use the variable already defined with this name and the
‘new’ option; e.g. X(Rationals,"x":new);
to create a new variable with the duplicate name.
brk>
gap> X(Rationals,"x":old);
x

In teaching mode, the old option is chosen as default.

Polynomial rings

Polynomial rings in GAP are not needed to create (or do operations with) polynomials, but they
can be created, for example to illustrate the concept of qideals and quotient rings.

For a commutative base ring B and a list of variable names (given as strings, or as integers),
the command PolynomialRing(B ,names ) creates a polynomial ring over B with the specified
variables. If names are given as strings, the same issues about name duplication (and the options
old and new) as described in the previous section exist.

The actual indeterminates of such a ring R can be obtained as a list by IndeterminatesOfPolynomialRing(R ),
as a convenience for users the command AssignGeneratorVariables(R ) will assign global GAP
variables with the same names to the indeterminates. (This will overwrite existing variables and
GAP will issue corresponding warnings.)

Operations for polynomials

Arithmetic for polynomials is as with any ring elements. Because GAP implements the quotient field,
division of polynomials is always possible, but might result in a proper quotient. (It is possible to
test divisibility using IsPolynomial.)
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gap> (x^2-1)/(x-1);
x+1
gap> (x^2-1)/(x-2);
(x^2-1)/(x-2)
gap> IsPolynomial((x^2-1)/(x-2));
false
gap> IsPolynomial((x^2-1)/(x-1));
true

Polynomials can be evaluated using the function Value. For univariate polynomials the value
given is simply specialized to the one variable, in the multivariate case a list of variables and of
their respective values needs to be given.

gap> Value(x^2-1,2);
3
gap> Value(x^2-1,[x],[2]);
3
gap> Value(x^2-1,[y],[2]);
x^2-1
gap> Value(x^2-y,[x],[1]);
-y+1
gap> Value(x^2-y,[y],[1]);
x^2-1
gap> Value(x^2-y,[x,y],[1,2]);
-1
gap> Value(x^2-y,[x,y],[2,1]);
3

For univariate polynomials, Gcd, ShowGcd and GcdRepresentation also work as for integers.

gap> Gcd(x^10-x,x^15-x);
x^2-x
gap> GcdRepresentation(x^10-x,x^15-x);
[ -x^10-x^5-x, x^5+1 ]
gap> ShowGcd(x^10-x,x^15-x);
x^10-x=0*(x^15-x) + x^10-x
x^15-x=x^5*(x^10-x) + x^6-x
x^10-x=x^4*(x^6-x) + x^5-x
x^6-x=x*(x^5-x) + x^2-x
x^5-x=(x^3+x^2+x+1)*(x^2-x) + 0
The Gcd is x^2-x
= 1*(x^6-x) -x*(x^5-x)
= -x*(x^10-x) + (x^5+1)*(x^6-x)
= (x^5+1)*(x^15-x) + (-x^10-x^5-x)*(x^10-x)
x^2-x

Factors returns a list of irreducible factors of a polynomial. The assumption is that the co-
efficients are taken from the quotient field, scalar factors therefore are simply attached to one
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of the factors. By specifying a polynomial ring first, it is possible to factor over larger fields.
IsIrreducible simply tests whether a polynomial has proper factors.

gap> Factors (x^10-x);
[ x-1, x, x^2+x+1, x^6+x^3+1 ]
gap> Factors (2*(x^10-x));
[ 2*x-2, x, x^2+x+1, x^6+x^3+1 ]
gap> Factors(PolynomialRing(CF(3)),x^10-x);
[ x-1, x, x+(-E(3)), x+(-E(3)^2), x^3+(-E(3)), x^3+(-E(3)^2) ]

The function RootsOfPolynomial returns a list of all roots of a polynomial, again it is possible
to specify a larger field to force factorization over this:

gap> RootsOfPolynomial(x^10-x);
[ 1, 0 ]
gap> RootsOfPolynomial(CF(3),x^10-x);
[ 1, 0, E(3), E(3)^2 ]

Gcd and Factors also work for multivariate polynomials, though no multivariate factorization
over larger fields is possible.

gap> a:=(x-y)*(x^3+2*y)*Value(x^3-1,x+y);
x^7+2*x^6*y-2*x^4*y^3-x^3*y^4+2*x^4*y+4*x^3*y^2-4*x*y^4-2*y^5-x^4+x^3*y-2*x*y+\
2*y^2
gap> b:=(x-y)*(x^4+y)*Value(x^3-1,x+y);
x^8+2*x^7*y-2*x^5*y^3-x^4*y^4-x^5+2*x^4*y+2*x^3*y^2-2*x*y^4-y^5-x*y+y^2
gap> Gcd(a,b);
x^4+2*x^3*y-2*x*y^3-y^4-x+y
gap> Factors(a);
[ x-y, x+y-1, x^2+2*x*y+y^2+x+y+1, x^3+2*y ]

All functions for polynomials work as well over finite fields.

gap> x:=X(GF(5),"x":old);
x
gap> Factors(x^10-x);
[ x, x-Z(5)^0, x^2+x+Z(5)^0, x^6+x^3+Z(5)^0 ]
gap> Factors(PolynomialRing(GF(25)),x^10-x);
[ x, x-Z(5)^0, x+Z(5^2)^4, x+Z(5^2)^20, x^3+Z(5^2)^4, x^3+Z(5^2)^20 ]
gap> RootsOfPolynomial(GF(5^6),x^10-x);
[ 0*Z(5), Z(5)^0, Z(5^2)^16, Z(5^2)^8, Z(5^6)^8680, Z(5^6)^12152,
Z(5^6)^13888, Z(5^6)^1736, Z(5^6)^3472, Z(5^6)^6944 ]

2.8 Small Rings

GAP contains a library of all rings of order up to 15. For an order n, the command NumberSmallRings(n )
returns the number of rings of order n up to isomorphism, SmallRing(n ,i ) returns the i-th iso-
morphism type. The same kind of objects can be used to represent rings that are finitely generated
as additive group.
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Note, as with polynomial rings, that – while the elements are printed using a,b,c – these objects
are not automatically defined as GAP variables, but could be using the command AssignGeneratorVariables.

gap> NumberSmallRings(8);
52
gap> R:=SmallRing(8,40);
<ring with 3 generators>
gap> Elements(R);
[ 0*a, c, b, b+c, a, a+c, a+b, a+b+c ]
gap> GeneratorsOfRing(R);
[ a, b, c ]
gap> R.2; # individual generator access
b
gap> ShowAdditionTable(R);
* | 0*a c b b+c a a+c a+b a+b+c
------+------------------------------------------------
0*a | 0*a c b b+c a a+c a+b a+b+c
c | c 0*a b+c b a+c a a+b+c a+b
b | b b+c 0*a c a+b a+b+c a a+c
b+c | b+c b c 0*a a+b+c a+b a+c a
a | a a+c a+b a+b+c 0*a c b b+c
a+c | a+c a a+b+c a+b c 0*a b+c b
a+b | a+b a+b+c a a+c b b+c 0*a c
a+b+c | a+b+c a+b a+c a b+c b c 0*a
gap> AssignGeneratorVariables(R);
#I Assigned the global variables [ a, b, c ]

If R is finite and small, GAP can enumerate (using a brute-force approach that will not scale
well to larger rings) all subrings of R by the command Subrings(R ). For each of these rings one
can ask for example for the Elements, show the arithmetic tables, or test whether the subring is
an (two-sided) ideal.

gap> S:=Subrings(R);
[ <ring with 1 generators>, <ring with 1 generators>,
<ring with 1 generators>, <ring with 1 generators>,
<ring with 1 generators>, <ring with 2 generators>,
<ring with 2 generators>, <ring with 2 generators>,
<ring with 2 generators>, <ring with 3 generators> ]

gap> List(S,GeneratorsOfRing);
[ [ 0*a ], [ a ], [ b ], [ a+b ], [ c ], [ a, b ], [ b, c ], [ a, c ],
[ a+b, c ], [ a, b, c ] ]

gap> Elements(S[6]);
[ 0*a, b, a, a+b ]
gap> ShowAdditionTable(S[3]);
+ | 0*a b
----+--------
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0*a | 0*a b
b | b 0*a
gap> List(S,x->IsTwoSidedIdeal(R,x));
[ true, true, true, false, true, true, true, true, false, true ]

Similarly Ideals(R ) enumerates all (two-sided) ideals of R . As described in section 2.9 it is
possible to form quotient rings.

gap> I:=Ideals(R);
[ <ring with 1 generators>, <ring with 1 generators>,
<ring with 1 generators>, <ring with 1 generators>,
<ring with 2 generators>, <ring with 2 generators>,
<ring with 2 generators>, <ring with 3 generators> ]

gap> Q:=R/I[4];
<ring with 2 generators>
gap> ShowAdditionTable(Q);
+ | 0*q1 q2 q1 q1+q2
------+------------------------
0*q1 | 0*q1 q2 q1 q1+q2
q2 | q2 0*q1 q1+q2 q1
q1 | q1 q1+q2 0*q1 q2
q1+q2 | q1+q2 q1 q2 0*q1

Creating Small Rings

As the element list indicates, these rings are represented as quotients of a free additive group with
multiplication defined for basis vectors. (No test is done whether this multiplication satisfies the
ring axioms.) These rings can be infinite, but need to be finitely generated as an abelian group.

The process of creating them is probably slightly complicated for beginning students (and thus
would need to be done by the teacher in advance in a file).

Assuming that we want to represent a ring R which is finitely generated as an abelian additive
group, choose a basis b1, . . . , bm of the additive group such that li is the additive order of bi,
respectively 0, if this order is infinite. Let L be the list of the li. To specify the multiplication, set
up a table of structure constants with T :=EmptySCTable(m ,0); For any pair of basis vectors bi, bj ,
such that bi · bj is nonzero, express bi · bj =

∑
k ck · bk with ck ∈ Z. This product then is specified

by the command SetEntrySCTable(T ,i ,j ,P );, where P = [c1, 1, c2, 2, . . .], with entry pairs ci, i
ommitted if ci = 0.

Having done this, the ring can be created using the command RingByStructureConstants(L ,T ,names );,
where names is a list of strings, indicating the print names for the generators.

For example, to create the field with 9 elements, generated by two elements a = 1 and b a root
of x2 + 1, one could use the following approach:

gap> T:=EmptySCTable(2,0);;
gap> SetEntrySCTable(T,1,1,[1,1]); # a*a=1*a
gap> SetEntrySCTable(T,1,2,[1,2]); # a*b=1*b
gap> SetEntrySCTable(T,2,1,[1,2]); # b*a=1*b
gap> SetEntrySCTable(T,2,2,[-1,1]); # b*b=-1*a
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gap> R:=RingByStructureConstants([3,3],T,["a","b"]);
gap> ShowAdditionTable(R);
+ | 0*a b -b a a+b a-b -a -a+b -a-b
-----+---------------------------------------------
0*a | 0*a b -b a a+b a-b -a -a+b -a-b
b | b -b 0*a a+b a-b a -a+b -a-b -a
-b | -b 0*a b a-b a a+b -a-b -a -a+b
a | a a+b a-b -a -a+b -a-b 0*a b -b
a+b | a+b a-b a -a+b -a-b -a b -b 0*a
a-b | a-b a a+b -a-b -a -a+b -b 0*a b
-a | -a -a+b -a-b 0*a b -b a a+b a-b
-a+b | -a+b -a-b -a b -b 0*a a+b a-b a
-a-b | -a-b -a -a+b -b 0*a b a-b a a+b

gap> ShowMultiplicationTable(R);
* | 0*a b -b a a+b a-b -a -a+b -a-b
-----+---------------------------------------------
0*a | 0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a 0*a
b | 0*a -a a b -a+b a+b -b -a-b a-b
-b | 0*a a -a -b a-b -a-b b a+b -a+b
a | 0*a b -b a a+b a-b -a -a+b -a-b
a+b | 0*a -a+b a-b a+b -b -a -a-b a b
a-b | 0*a a+b -a-b a-b -a b -a+b -b a
-a | 0*a -b b -a -a-b -a+b a a-b a+b
-a+b | 0*a -a-b a+b -a+b a -b a-b b -a
-a-b | 0*a a-b -a+b -a-b b a a+b -a -b

Similarly, for creating (rational) quaternions with basis e, i, j, k, the following commands could
be used:

gap> T:=EmptySCTable(4,0);;
gap> SetEntrySCTable(T,1,1,[1,1]); # e*e=e
gap> SetEntrySCTable(T,1,2,[1,2]); # e*i=i
gap> SetEntrySCTable(T,1,3,[1,3]); # e*j=j
gap> SetEntrySCTable(T,1,4,[1,4]); # e*k=k
gap> SetEntrySCTable(T,2,1,[1,2]); # i*e=i
gap> SetEntrySCTable(T,2,2,[-1,1]); # i*i=-e
gap> SetEntrySCTable(T,2,3,[1,4]); # i*j=k
gap> SetEntrySCTable(T,2,4,[-1,3]); # i*k=-j
gap> SetEntrySCTable(T,3,1,[1,3]); # j*e=j
gap> SetEntrySCTable(T,3,2,[-1,4]); # j*i=-k
gap> SetEntrySCTable(T,3,3,[-1,1]); # j*j=-1
gap> SetEntrySCTable(T,3,4,[1,2]); # j*k=i
gap> SetEntrySCTable(T,4,1,[1,4]); # k*e=k
gap> SetEntrySCTable(T,4,2,[1,3]); # k*i=j
gap> SetEntrySCTable(T,4,3,[-1,2]); # k*j=-i
gap> SetEntrySCTable(T,4,4,[-1,1]); # k*k=-1
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gap> R:=RingByStructureConstants([0,0,0,0],T,["e","i","j","k"]);
gap> ShowMultiplicationTable(GeneratorsOfRing(R));
* | e i j k
---+------------------------
e | e i j k
i | i -e k -j
j | j -k -e i
k | k j -i -e

Creating rings from arithmetic tables

2.9 Ideals, Quotient rings, and Homomorphisms

Due to a lack of generic algorithms, most of the functionality for ideals, quotient rings and homo-
morphisms only exists for polynomial rings and small rings (se described in section 2.8).

A (two-sided) ideal I in a ring R is created by specifying a set of ideal generators – elements xi
such that

I =

{∑
i

ri · xi · si | ri, si ∈ R

}
.

In GAP such an ideal is generated by the command TwoSidedIdeal(R ,gens ) with gens being a
list of the generators xi. If the ring is commutative, the command Ideal can be used as well.

gap> R:=PolynomialRing(Rationals,["x","y"]);
Rationals[x,y]
gap> AssignGeneratorVariables(R);
#I Assigned the global variables [ x, y ]
gap> I:=TwoSidedIdeal(R,[x^2*y-2,x*y^2-5]);
<two-sided ideal in Rationals[x,y], (2 generators)>

Membership in ideals can be tested in the usual way using in. (See section 2.10 for a description
of how this is done in polynomial rings.)

For an ideal I C R , the quotient operation R /I creates a ring (of a similar type as the small
rings (section 2.8) that is isomorphic to the quotient ring. The generators of this quotient ring are
named with some relation to the original ring (e.g. if R is a polynomial ring, the generators are
called in the form (x5) as image of x5). In general, however it is better to use instead the natural
homomorphism NaturalHomomorphismByIdeal(R ,I ), the quotient ring then can be obtaines as
Image of this homomorphism and Image, respectively PreImagesRepresentative can be used to
relate R with its quotient.

2.10 Resultants and Groebner Bases

This section describes some more advanced operations for polynomials. This is also the functionality
underlying most operations for polynomial rings.

The solution of multivariate polynomial systems and related applications to geometry are a very
nice application of abstract algebra, that becomes possible using computation, as the arithmetic is
rather tedious.
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Resultants are one of the topics that vanished from the standard syllabus with the rise of modern
algebra. Nevertheless they can be very useful for obtaining concrete results. A description suitable
for undergraduate courses can be found for example in [CLO07, section XXX].

The two fundamental properties of the resultant r(y) := resx(f(x, y), g(x, y)) (where y in fact
could be a set of variables) are:

Variable elimination If (x, y) is a common zero for f and g, then y is a zero for r(y). Thus one
can often solve systems of polynomial equations in a process similar to Gaussian elimination,
using resultants for variable elimination. Note that resultants can turn out to be zero and
that the order of elimination is often crucial.

Root arithmetic If f, g ∈ F [x] and α, β in the splitting field of f and g such that f(α) and
g(β) = 0, then

resy(f(x− y), g(y)) has root α+ β
resy(yn · f(x/y), g(y)) has root α · β

This allows to construct polynomials with more complicated roots, and – via the primitive element
theorem – polynomials with bespoke, more complicated splitting fields, see chapter ??.

Resultants in GAP are rather straightforward. The syntax is Resultant(pol1,pol2,elimvar ),
the result is a polynomial with the specified variable eliminated.

gap> f:=x^2-3;
x^2-3
gap> g:=x^2-5;
x^2-5
gap> r:=Resultant(Value(f,x-y),Value(g,y),y);
x^4-16*x^2+4
gap> Value(r,Sqrt(3)+Sqrt(5)); # as described above uner root arithmetic
0

There is no functionality that will automatically form iterated resultants. Also, as soon as roots
get beyond quadratic irrationalities, it can be hard if not impossible to find and express root values
for back substitution. Exercise 15 illustrates the process.

Groebner Bases Groebner bases are the fundamental tool for calculations in multivariate poly-
nomial rings. In recent years this topic has started to move into textbooks. Again, besides strength-
ening the concept of ideals and factor ring elements, they allow for a series of interesting applications:

Solving Polynomial Systems Groebner bases with respect to a lexicographic ordering offer im-
mediately a “triangulization” as desired for solving a system of polynomial equations.

Canonical representatives for quotient rings In the same way that the remainder of poly-
nomial division can be used to describe the quotient ring of a univariate polynomial ring,
reduction using a degree ordering allows for a description of canonical representatives for
R/I and thus a description of R/I. This is a good way of constructing rings with bespoke
properties.
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Geometry Besides being a main tool for algebraic geometry, Groebner bases can be used to de-
scribe situations in Euclidean geometry via polynomials in the coordinates, and subsequently
to construct “arithmetic” proofs for problems from classical geometry. This setup also leads
easily to the impossibility of many classical problems using field extensions.

The handout 2.11 introduces the treatment geometric problems using polynomials and ad-
dresses Groebner basis issues, including the question of constants versus variables.

Underlying a Groebner basis calculation is the definition of a suitable ordering. Orderings in GAP
are created by functions, which can take a sequence of indeterminates (either multiple arguments or
a list) as arguments. In this case these indeterminates are ordered as given. Indeterminates that are
not given have lower rank and are ordered according to their internal index number. (For further
details on orderings, see the system manual.)

GAP provides the following polynomial orderings:

MonomialLexOrdering() implements a lexicographic (lex) ordering, i.e. monomials are compared
by the exponent vectors as words in the dictionary. The default monomial ordering simply
orders the indeterminates by their index number, i.e. x1 > x2 > · · · . A lexicographic ordering
is required for solving polynomial systems.

MonomialLexOrdering(x,y,z) implements a lex ordering with x > y > z. If the indeterminates
were defined in the natural order, this is exactly the same as MonomialLexOrdering().

MonomialGrlexOrdering() implements a grlex ordering which compares first by total degree
and the lexicographically. Again it is possible to indicate a variable ordering.

MonomialGrevlexOrdering() implements a grevlex ordering which first compares by degree and
then reverse lexicographic. Often this is the most efficient ordering for computing a Gr”oebner
basis.

LeadingTermOfPolynomial(pol,ordering ) returns the leading term of the polynomial pol ,
LeadingCoefficientOfPolynomial(pol,ordering ) and LeadingMonomialOfPolynomial(pol,ordering )
respectively its coefficient and monomial factors.

gap> x:=X(Rationals,"x");;y:=X(Rationals,"y");;z:=X(Rationals,"z");;
gap> lexord:=MonomialLexOrdering();grlexord:=MonomialGrlexOrdering();
MonomialLexOrdering()
MonomialGrlexOrdering()
gap> f:=2*x+3*y+4*z+5*x^2-6*z^2+7*y^3;;
gap> LeadingMonomialOfPolynomial(f,grlexord);
y^3
gap> LeadingTermOfPolynomial(f,lexord);
5*x^2
gap> LeadingMonomialOfPolynomial(f,lexord);
x^2
gap> LeadingTermOfPolynomial(f,MonomialLexOrdering(z,y,x));
-6*z^2
gap> LeadingTermOfPolynomial(f,MonomialLexOrdering(y,z,x));
7*y^3
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gap> LeadingTermOfPolynomial(f,grlexord);
7*y^3
gap> LeadingCoefficientOfPolynomial(f,lexord);
5
gap> l:=[f,Derivative(f,x),Derivative(f,y),Derivative(f,z)];;
gap> Sort(l,MonomialComparisonFunction(lexord));l;
[ -12*z+4, 21*y^2+3, 10*x+2, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z ]
gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering(z,y,x)));l;
[ 10*x+2, 21*y^2+3, -12*z+4, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z ]

A Groebner basis in GAP is simply a list of polynomials, and is computed from a list of poly-
nomials with respect to a supplied ordering and is computed from a list pols of polynomials
via GroebnerBasis(pols,ordering ). The algorithm used is a rather straightforward implemen-
tation of Buchberger’s algorithm which should be sufficient for teaching purposes but will not be
competitive with dedicated systems.

There also is ReducedGroebnerBasis(pols,ordering ), which removes redundancies from the
resulting list and scales the leading coefficient to 1. (The resulting basis is unique for the ideal.)
For all practical applications this is preferrable to the ordinary GroebnerBasis command, which
is provided purely for illustrating the process of computing such a basis.

gap> l:=[x^2+y^2+z^2-1,x^2+z^2-y,x-y];;
gap> GroebnerBasis(l,MonomialLexOrdering());
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1, 1/2*z^4+2*z^2-1/2 ]
gap> GroebnerBasis(l,MonomialLexOrdering(z,y,x));
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -x^2-x+1 ]
gap> ReducedGroebnerBasis(l,MonomialLexOrdering());
[ z^4+4*z^2-1, -1/2*z^2+y-1/2, -1/2*z^2+x-1/2 ]
gap> ReducedGroebnerBasis(l,MonomialLexOrdering(z,y,x));
[ x^2+x-1, -x+y, z^2-2*x+1 ]

Issuing the command SetInfoLevel(InfoGroebner,3); prompts GAP to print information
about the progress of the calculation, including the S-polynomials computed.

gap> SetInfoLevel(InfoGroebner,3);
gap> bas:=GroebnerBasis(l,MonomialLexOrdering());
#I Spol(2,1)=-y^2-y+1
#I reduces to -y^2-y+1
#I |bas|=4, 7 pairs left
#I Spol(3,1)=-x*y-y^2-z^2+1
#I reduces to -z^2+2*y-1
#I |bas|=5, 11 pairs left
#I Pair (3,2) avoided
#I Pair (4,1) avoided
#I Pair (4,2) avoided
#I Pair (4,3) avoided
#I Spol(4,4)=0
#I Pair (5,1) avoided
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#I Pair (5,2) avoided
#I Pair (5,3) avoided
#I Spol(5,4)=y*z^2+3*y-2
#I reduces to 1/2*z^4+2*z^2-1/2
#I |bas|=6, 8 pairs left
#I Spol(5,5)=0
#I Pair (6,1) avoided
#I Pair (6,2) avoided
#I Pair (6,3) avoided
#I Pair (6,4) avoided
#I Pair (6,5) avoided
#I Spol(6,6)=0
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1, 1/2*z^4+2*z^2-1/2 ]

For a known Groebner basis , the command PolynomialReduction(poly,basis,ordering )
reduces poly with respect to basis . It returns a list [remainder,quotients ] where poly =∑
i quotients i ·basis i+remainder . (Note that the reduction process used differs from textbook

formulations, the “textbook” version is implemented via PolynomialDivisionAlgorithm(poly,basis,ordering ).)
Similarly PolynomialReducedRemainder(poly,basis,ordering ) returns only the remainder .

gap> PolynomialReduction(2*(x*y*z)^2,bas,MonomialLexOrdering());
[ 13*z^2-3,
[ 2*y^2*z^2, 0, 0, 2*y^2*z^2+2*z^4-2*y*z^2+2*z^2, z^4+2*z^2, 2*z^2-6 ] ]

gap> PolynomialDivisionAlgorithm(2*(x*y*z)^2,bas,MonomialLexOrdering());
[ 13*z^2-3,
[ 2*y^2*z^2, 0, 0, 2*y^2*z^2+2*z^4-2*y*z^2+2*z^2, z^4+2*z^2, 2*z^2-6 ] ]

gap> PolynomialReducedRemainder(2*(x*y*z)^2,bas,MonomialLexOrdering());
13*z^2-3

2.11 Handouts

Some aspects of Gröbner bases

Constants Sometimes we want to solve a Gröbner basis for situations where there are constants
involved. We cannot simply consider these constants as further variables (e.g. one cannot solve for
these.) Instead, suppose that we have constants c1, . . . , ck and variables x1, . . . , xn.

We first form the polynomial ring in the constants, C := k[c1, . . . , ck]. This is an integral
domain, we therefore (Theorem 2.25 in the book) can from the field of fractions (analogous to how
the rationals are formed as fractions of integers) F = Frac(C) = k(c1, . . . , ck)2.

We then set R = F [x1, . . . , xn] = k(c1, . . . , ck)[x1, . . . , xn] and work in this polynomial ring.
(The only difficulty arises once one specializes the constants: It is possible that denominators
evaluate back to zero.)

For example, suppose we want to solve the equations

x2y + y + a = y2x+ x = 0

2The round parentheses denote that we permit also division
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In GAP we first create the polynomial ring for the constants:

gap> C:=PolynomialRing(Rationals,["a"]);
Rationals[a]
gap> a:=IndeterminatesOfPolynomialRing(S)[1];
a

(There is no need to create a separate fraction field. Now we define the new variables x, y to have
coefficients from C:

gap> x:=X(C,"x");;
#I You are creating a polynomial *over* a polynomial ring (i.e. in an
#I iterated polynomial ring). Are you sure you want to do this?
#I If not, the first argument should be the base ring, not a polynomial ring
#I Set ITER_POLY_WARN:=false; to remove this warning.
gap> y:=X(C,"y");;

As one sees, GAP warns that these variables are defined over a ring which has already variables,
but we can ignore this warning3, or set ITER_POLY_WARN:=false; to turn it off.

Now we can form polynomials and calculate a Gröbner basis:

gap> f:=x^2*y+y+a;;
gap> g:=y^2*x+x;;
gap> ReducedGroebnerBasis([f,g],MonomialLexOrdering());
[ y^3+a*y^2+y+a, x*y^2+x, x^2-y^2-a*y ]

We thus need that y3 + ay2 + y + a = 0, and then can solve this for y and substitute back.

The Nullstellensatz and the Radical In applications (see below) we sometimes want to check
not whether g ∈ I C R, but whether g has “the same roots” as I. (I.e. we want that g(x1, . . . , xn) =
0 if and only if f(x1, . . . , xn) = 0 for all f ∈ I.) Clearly this can hold for polynomials not in I, for
example consider I =

〈
x2
〉

C Q[x], then g(x) = x 6∈ I, but has the same roots.
An important theorem from algebraic geometry show that over C, such a power condition is all

that can happen4:

Theorem (Hilbert’s Nullstellensatz): Let R = C[x1, . . . , xn] and I C R. If g ∈ R
such that g(x1, . . . , xn) = 0 if and only if f(x1, . . . , xn) = 0 for all f ∈ I, then there
exists an integer m, such that gm ∈ I.

The set {g ∈ R | ∃m : gm ∈ I} is called the Radical of I.
There is a neat way how one can test this property, without having to try out possible m:

Suppose R = k[x1, . . . , xn] and I = 〈f1, . . . , fm〉 C R. Let g ∈ R. Then there exists a natural
number m such that gm ∈ I if and only if (we introduce an auxiliary variable y)

1 ∈ 〈f1, . . . , fm, 1− yg〉 =: Ĩ C k[x1, . . . , xn, y]

3The reason for the warning is that this was a frequent error of users when defining variables and polynomial
rings. Variables were taken accidentally not from the polynomial ring, but created over the polynomial ring.

4Actually, one does not need C, but only that the field is algebraically closed
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The reason is easy: If 1 ∈ Ĩ, we can write

1 =
∑
i

p(x1, . . . , xn, y) · fi(x1, . . . , xn) + q(x1, . . . , xn, y) · (1− yg)

We now set y = 1/g (formally in the fraction field) and multiply with a sufficient high power
(exponent m) of g, to clean out all g in the denominators. We obtain

gm =
∑
i

gm · p(x1, . . . , xn, 1/gm)︸ ︷︷ ︸
∈R

·fi(x1, . . . , xn) + gm · q(x1, . . . , xn, y) · (1− y/y)︸ ︷︷ ︸
=0

∈ I.

Vice versa, if gm ∈ I, then

1 = ymgm + (1− ymgm) = ymgm︸ ︷︷ ︸
∈I⊂Ĩ

+ (1− yg)︸ ︷︷ ︸
∈Ĩ

(1 + yg + · · ·+ ym−1gm−1) ∈ Ĩ

This property can be tested easily, as 1 ∈ Ĩ ⇔ Ĩ = k[x1, . . . , xn, y], which is the case only if a
Gröbner basis for Ĩ contains a constant.

We will see an application of this below.

Proving Theorems from Geometry Suppose we describe points in the plane by their (x, y)-
coordinates. We then can describe many geometric properties by polynomial equations:

Theorem: Suppose that A = (xa, ya), B = (xb, yb), C = (xc, yc) and D = (xd, yd) are points
in the plane. Then the following geometric properties are described by polynomial equations:

AB is parallel to CD:
yb − ya
xb − xa

=
yd − yc
xd − xc

, which implies (yb−ya)(xd−xc) = (yd−yc)(xb−xa).

AB ⊥ CD: (xb − xa)(xd − xc) + (yb − ya)(yd − yc) = 0.

|AB| = |CD|: (xb − xa)2 + (yb − ya)2 = (xd − xc)2 + (yd − yc)2.

C lies on the circle with center A though the point B: |AC| = |AB|.

C is the midpoint of AB: xc =
1
2

(xb − xa), yc = 1
2(yb = ya).

C is collinear with AB: self

BD bisects ∠ABC: self

A theorem from geometry now sets up as prerequisites some points (and their relation with
circles and lines) and claims (the conclusion) that this setup implies other conditions. If we suppose
that (xi, yi) are the coordinates of all the points involved, the prerequisites thus are described by
a set of polynomials fj ∈ Q[x1, . . . , xn, y1, . . . , yn] =: R. A conclusion similarly corresponds to a
polynomials g ∈ R.

The statement of the geometric theorem now says that whenever the {(xi, yi)} are points ful-
filling the prerequisites (i.e. fj(x1, . . . , xn, y1, . . . , yn) = 0), then also the conclusion holds for these
points (i.e. g(x1, . . . , xn, y1, . . . , yn) = 0).

This is exactly the condition we studied in the previous section and translated to gm ∈
〈f1, . . . , fm〉, which we can test.
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(Caveat: This is formally over C, but we typically want real coordinates. There is some extra
subtlety in practice.)

For example, consider the theorem of Thales: Any triangle suspended under a half-circle has
a right angle.
We assume (after rotation and scaling) that A = (−1, 0) and B = (1, 0)
and set C = (x, y) with variable coordinates. The fact that C is on the
circle (whose origin is (0, 0) and radius is 1) is specified by the polynomial

f = x2 + y2 − 1 = 0 A

C

B

The right angle at C means that AC ⊥ BC. We encode this as

g = (x− (−1)) + (1− x) + y(−y) = −x2 − y2 + 1 = 0.

Clearly g is implied by f .

Apollonius’ theorem We want to use this approach to prove a classical geometrical theorem (it
is a special case of the “Nine point” or “Feuerbach circle” theorem):

Circle Theorem of Apollonius: Suppose
that ABC is a right angled triangle with right
angle at A. The midpoints of the three sides,
and the foot of the altitude drawn from A onto
BC all lie on a circle.

A

B C

H

M
BC

M
ACM

AB

To translate this theorem into equations, we choose coordinates for the points A, B, C. For simplic-
ity we set (translation) A = (0, 0) and B = (b, 0) and C = (0, c), where b and c are constants. (That
is, the calculation takes place in a polynomial ring not over the rationals, but over the quotient
field of Q[b, c].) Suppose that MAB = (x1, 0), MAC = (0, x2) and MBC = (x3, x4). We get the
equations

f1 = 2x1 − b = 0
f2 = 2x2 − c = 0
f3 = 2x3 − b = 0
f4 = 2x4 − c = 0

Next assume that H = (x5, x6). Then AH ⊥ BC yields

f5 = x5b− x6c = 0

Because H lies on BC, we get
f6 = x5c+ x6b− bc = 0

To describe the circle, assume that the middle point is O = (x7, x8). The circle property then means
that |MABO| = |MBCO| = |MACO| which gives the conditions

f7 = (x1 − x7)2 + (0− x8)2 − (x3 − x7)2 − (x4 − x8)2 = 0
f8 = (x1 − x7)2 + x2

8 − x
2
7 − (x8 − x2)2 = 0
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The conclusion is that |HO| = |MABO|, which translates to

g = (x5 − x7)2 + (x6 − x8)2 − (x1 − x7)2 − x2
8 = 0.

We now want to show that there is an m, such that gm ∈ 〈f1, . . . , f8〉. In GAP, we first define a
ring for the two constants, and assign the constants. We also define variables over this ring.

R:=PolynomialRing(Rationals,["b","c"]);
ind:=IndeterminatesOfPolynomialRing(R);b:=ind[1];c:=ind[2];
x1:=X(R,"x1"); ... x8:=X(R,"x8");

We define the ideal generators fi as well as g:

f1:=2*x1-b;
f2:=2*x2-c;
f3:=2*x3-b;
f4:=2*x4-c;
f5:=x5*b-x6*c;
f6:=x5*c+x6*b-b*c;
f7:=(x1-x7)^2+(0-x8)^2-(x3-x7)^2-(x4-x8)^2;
f8:=(x1-x7)^2+x8^2-x7^2-(x8-x2)^2;
g:=(x5-x7)^2+(x6-x8)^2-(x1-x7)^2-x8^2;

For the test whether gm ∈ I, we need an auxiliary variable y. Then we can generate a Gröbner
basis for Ĩ:

order:=MonomialLexOrdering();
bas:=ReducedGroebnerBasis([f1,f2,f3,f4,f5,f6,f7,f8,1-y*g],order);

The basis returned is (1), which means that indeed gm ∈ I.
If we wanted to know for which m, we can test membership in I itself, and find that already

g ∈ I:

gap> bas:=ReducedGroebnerBasis([f1,f2,f3,f4,f5,f6,f7,f8],order);
[ x8-1/4*c, x7-1/4*b, x6+(-b^2*c/(b^2+c^2)), x5+(-b*c^2/(b^2+c^2)),
x4-1/2*c, x3-1/2*b, x2-1/2*c, x1-1/2*b ]

gap> PolynomialReducedRemainder(g,bas,order);
0

Reed Solomon Codes

We have seen already, in the form of check digits, a method for detecting errors in data transmission.
In general, however, one does not only on to recognize that an error has happened, but be able
to correct it. This is not only necessary for dealing with accidents; it often is infeasible to build
communication systems which completely exclude errors, a far better option (in terms of cost or
guaranteeable capabilities) is to permit a limited rate of errors and to install a mechanism that
deals with these errors. The most näıve schema for this is complete redundancy: retransmit data
multiple times. This however introduces an enormous communication overhead, because in case of
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a single retransmission it still might not be possible to determine which of two different values is
correct. In fact we can guarantee a better error correction with less overhead, as we will see below.

The two fundamental problems in coding theory are:

Theory: Find good (i.e. high error correction at low redundancy) codes.

Practice: Find efficient ways to implement encoding (assigning messages to code words) and
decoding (determining the message from a possibly distorted code word).

In theory, almost (up to ε) optimal encoding can be achieved by choosing essentially random code
generators, but then decoding can only be done by table lookup. To use the code in practice there
needs to be some underlying regularity of the code, which will enable the algorithmic encoding and
decoding. This is where algebra comes in.

A typical example of such a situation is the compact disc: not only should this system be
impervious to fingerprints or small amounts of dust. At the time of system design (the late 1970s)
it actually was not possible to mass manufacture compact discs without errors at any reasonable
price. The design instead assumes errors and includes capability for error correction. It is important
to note that we really want to correct all errors (this would be needed for a data CD) and not
just conceal errors by interpolating erroneous data (which can be used with music CDs, though
even music CDs contain error correction to deal with media corruption). This extra level of error
correction can be seen in the fact that a data CD has a capacity of 650 MB, while 80 minutes of
music in stereo, sampled at 44,100 Hz, with 16 bit actually amount to 80 · 60 · 2 · 44100 · 2 bytes =
846720000 bytes = 808MB5, the overhead is extra error correction on a data CD.

The first step towards error correction is interleaving. As errors are likely to occur in bursts of
physically adjacent data (the same holds for radio communication with a spaceship which might get
disturbed by cosmic radiation) subsequent data ABCDEF is actually transmitted in the sequence
ADBECF. An error burst – say erasing C and D – then is spread over a wider area AXBEXF which
reduces the local error density. We therefore can assume that errors occur randomly distributed
with bounded error rate.

The rest of this document now describes the mathematics of the system which is used for error
correction on a CD (so-called Reed-Solomon codes) though for simplicity we will choose smaller
examples than the actual codes being used.

We assume that the data comes in the form of elements of a field F .
The basic idea behind linear codes is to choose a sequence of code generators g1, . . . , gk each

of length > k and to replace a sequence of k data elements a1, . . . , ak by the linear combination
a1g1 + a2g2 + · · ·+ akgk, which is a slightly longer sequence. This longer sequence (the code word)
is transmitted. We define the code to be the set of all possible code words.

For example (assuming the field with 2 elements) if the gi are given by the rows of the generator

matrix

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 we would replace the sequence a, b, c by a, b, c, a, b, c, while (a code

with far better error correction!) the matrix

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 would have us replace a, b, c

by
a, b, a+ b, c, a+ c, b+ c, a+ b+ c.

51MB is 10242 bytes
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We notice in this example that there are 23 = 8 combinations, any two of which differ in at least
3 places. If we receive a sequence of 7 symbols with at most one error therein, we can therefore
determine in which place the error occurred and thus can correct it. We thus have an 1-error
correcting code.

Next we want to assume (regularity!) that any cyclic shift of a code word is again a code word.
We call such codes cyclic codes. It now is convenient to represent a code word c0, . . . , cn−1 by the
polynomial c0 +c1x+c2x2 + · · ·+cn−1x

n−16. A cyclic shift now means to multiply by x, identifying
xn with x0 = 1. The transmitted messages therefore are not really elements of the polynomial ring
F [x], but elements of the factor ring F [x]/I with I = 〈xn − 1〉 C F [x]. The linear process of adding
up generators guarantees that the sum or difference of code words is again a code word. A cyclic
shift of a code word I + w then corresponds to the product (I + w) · (I + x). As any element of
F [x]/I is of the form I + p(x), demanding that cyclic shifts of code words are again code words
thus implies that the product of any code word (I + w) with any factor element (I + r) is again
a code word. We thus see that the code (i.e. the set of possible messages) is an ideal in F [x]/I.
We have seen in homework problem 38 that any such ideal — and thus any cyclic code – must be
of the form 〈I + d〉 with d a divisor of xn − 1. If d = d0 + d1x + · · · + dsx

s, we get in the above
notation the generator matrix

d0 d1 · · · ds 0 0 · · · 0
0 d0 d1 · · · ds 0 · · · 0
0 0 d0 d1 · · · ds · · · 0

...
0 0 · · · 0 d0 d1 · · · ds

 .

As d is a divisor of xn− 1 any further cyclic shift of the last generator can be expressed in terms of
the other generators. One can imagine the encoding process as evaluation of a polynomial at more
points than required for interpolation. This makes it intuitively clear that it is possible to recover
the correct result if few errors occur. The more points we evaluate at, the better error correction
we get (but also the longer the encoded message gets).

The task of constructing cyclic codes therefore has been reduced to the task of finding suitable
(i.e. guaranteeing good error correction and efficient encoding and decoding) polynomials d.

The most important class of cyclic codes are BCH-codes which are defined by prescribing the
zeroes of d. One can show that a particular regularity of these zeroes produces good error correction.
Reed-Solomon Codes (as used for example on a CD) are an important subclass of these codes.

To define such a code we start by picking a field with q elements. Such fields exists for any prime
power q = pm and can be constructed as quotient ring Zp[x]/ 〈p(x)〉 for p an irreducible polynomial
of degree m. (Using fields larger than Zp is crucial for the mechanism.) The code words of the code
will have length q − 1. If we have digital data it often is easiest to simply bundle by bytes and to
use a field with q = 28 = 256 elements.

We also choose the number s < q−1
2 of errors per transmission unit of q − 1 symbols which

we want to be able to correct. This is a trade-off between transmission overhead and correction
capabilities, a typical value is s = 2.

It is known that in any finite field there is a particular element α (a primitive root), such that
αq−1 = 1 but αk 6= 1 for any k < q − 1. (This implies that all powers αk (k < q − 1) are different.

6Careful: We might represent elements of F also by polynomials. Do not confuse these polynomials with the code
polynomials

57



Therefore every nonzero element in the field can be written as a power of α.) As every power β = αk

also fulfills that βq−1 = 1 we can conclude that

xq−1 − 1 =
q−1∏
k=0

(x− αk).

The polynomial d(x) = (x− α)(x− α2)(x− α3) · · · (x− α2s) therefore is a divisor of xq−1 − 1 and
therefore generates a cyclic code. This is the polynomial we use. The dimension (i.e. the minimal
number of generators) of the code then is q − 1 − 2s, respectively 2s symbols are added to every
q − 1− 2s data symbols for error correction.

For example, take q = 8. We take the field with 8 elements as defined in GAP via the polynomial
x3 + x + 1, the element α is represented by Z(8). We also choose s = 1. The polynomial defining
the code is therefore d = (x− α)(x− α2).

gap> x:=X(GF(8),"x");;
gap> alpha:=Z(8);
Z(2^3)
gap> d:=(x-alpha)*(x-alpha^2);
x^2+Z(2^3)^4*x+Z(2^3)^3

We build the generator matrix from the coefficients of the polynomial:

gap> coe:=CoefficientsOfUnivariatePolynomial(d);
[ Z(2^3)^3, Z(2^3)^4, Z(2)^0 ]
gap> g:=NullMat(5,7,GF(8));;
gap> for i in [1..5] do g[i]{[i..i+2]}:=coe;od;Display(g);
z^3 z^4 1 . . . .
. z^3 z^4 1 . . . z = Z(8)
. . z^3 z^4 1 . .
. . . z^3 z^4 1 .
. . . . z^3 z^4 1

To simplify the following description we convert this matrix into RREF. (This is just a base change
on the data and does not affect any properties of the code.)

gap> TriangulizeMat(g); Display(g);
1 . . . . z^3 z^4
. 1 . . . 1 1 z = Z(8)
. . 1 . . z^3 z^5
. . . 1 . z^1 z^5
. . . . 1 z^1 z^4

What does this mean now: Instead of transmitting the data ABCDE we transmit ABCDEPQ with
the two error correction symbols defined by

P = α3A+B + α3C + αD + αE

Q = α4A+B + α5C + α5D + α4E
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For decoding and error correction we want to find (a basis of) the relations that hold for all the
rows of this matrix. This is the nullspace7 of the matrix (and in fact is the same as if we had not
RREF).

gap> h:=NullspaceMat(TransposedMat(g));;Display(h);
z^3 1 z^3 z^1 z^1 1 . z = Z(8)
z^4 1 z^5 z^5 z^4 . 1

When receiving a message ABCDEPQ we therefore calculate two syndromes8

S = α3A+B + α3C + αD + αE + P

T = α4A+B + α5C + α5D + α4E +Q

If no error occurred both syndromes will be zero. However now suppose an error occurred and
instead of ABCDEPQ we receive A’B’C’D’E’P’Q’ where A′ = A+EA and so on. Then we get the
syndromes

S′ = α3A′ +B′ + α3C ′ + αD′ + αE′ + P ′

= α3(A+ EA) + (B + EB) + α3(C + EC) + α(D + ED) + α(E + EE) + (P + EP )
= α3A+B + α3C + αD + αE + P︸ ︷︷ ︸

= 0 by definition of the syndrome

+α3EA + EB + α3EC + αED + αEE + EP

= α3EA + EB + α3EC + αED + αEE + EP

and similarly
T ′ = α4EA + EB + α5EC + α5ED + α4EE + EQ

If symbol A’ is erroneous, we have that T ′ = αS′, the error is EA = α4S′ (using that α3 · α4 = 1).
If symbol B’ is erroneous, we have that T ′ = S′, the error is EB = S′.
If symbol C’ is erroneous, we have that T ′ = α2S′, the error is EC = α4S′.
If symbol D’ is erroneous, we have that T ′ = α4S′, the error is ED = α6S′.
If symbol E’ is erroneous, we have that T ′ = α3S′, the error is EE = α6S′.
If symbol P’ is erroneous, we have that S′ 6= 0 but T ′ = 0, the error is EP = S′.
If symbol Q’ is erroneous, we have that T ′ 6= 0 but S′ = 0, the error is EQ = T ′.

For an example, suppose we want to transmit the message

A = α3, B = α2, C = α, D = α4, E = α5.

We calculate

P = α3A+B + α3C + αD + αE = α6

Q = α4A+B + α5C + α5D + α4E = 0

7actually the right nullspace, which is the reason why we need to transpose in GAP, which by default takes left
nullspaces

8These syndromes are not unique. Another choice of nullspace generators would have yielded other syndromes.
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gap> a^3*a^3+a^2+a^3*a+a*a^4+a*a^5;
Z(2^3)^6
gap> a^4*a^3+a^2+a^5*a+a^5*a^4+a^4*a^5;
0*Z(2)

We can verify the syndromes for this message:

gap> S:=a^3*a^3+a^2+a^3*a+a*a^4+a*a^5+a^6;
0*Z(2)
gap> T:=a^4*a^3+a^2+a^5*a+a^5*a^4+a^4*a^5+0;
0*Z(2)

Now suppose we receive the message

A = α3, B = α2, C = α, D = α3, E = α5, P = α6, Q = 0.

We calculate the syndromes as S = 1, T = a4:

gap> S:=a^3*a^3+a^2+a^3*a+a*a^3+a*a^5+a^6;
Z(2)^0
gap> T:=a^4*a^3+a^2+a^5*a+a^5*a^3+a^4*a^5+0;
Z(2^3)^4

We recognize that T = α4S, so we see that symbol D is erroneous. The error is ED = α6S = α6

and thus the correct value for D is α3 − α6 = α4.

gap> a^3-a^6;
Z(2^3)^4

It is not hard to see that if more (but not too many) than s errors occur, the syndromes still
indicate that an error happened, even though we cannot correct it any longer. (One can in fact
determine the maximum number of errors the code is guaranteed to detect, even if it cannot correct
it any longer.) This is used in the CD system by combining two smaller Reed-Solomon codes in an
interleaved way. The result is called a Cross-Interleave Reed-Solomon code (CIRC): Consider the
message be placed in a grid like this:

A B C D
E F G H
I J K L

The first code acts on rows (i.e. ABCD, EFGH,. . . ) and corrects errors it can correct. If it detects
errors, but cannot correct them, it marks the whole row as erroneous, for example:

A B C D
X X X X
I J K L

The second code now works on columns (i.e. AXI, BXJ) and corrects the values in the rows marked
as erroneous. (As we know which rows these are, we can still correct better than with the second
code alone!) One can show that this combination produces better performance than a single code
with higher error correction value s.
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2.12 Problems

Exercise 2. Compute the Gcd of a = 67458 and b = 43521 and express it in the form xa+ yb.

Exercise 3. Calculate the gcd of x4+4x3−13x2−28x+60 and x6+5x5−x4−29x3−12x2+36x.

Exercise 4. a) Determine the check-digit for the ISBN 3-86073-427-?
b) Show (by giving an explicit example) that the check-digit of the ISBN does not necessarily correct
multiple errors.

Exercise 5. The easter formula of Gauß provides a way for calculating the date of easter (i.e. the
first sunday after the first full moon of spring) in any particular year. For the period 1900-2099 (a
restriction due to the use of the Georgian calendar) a simplified version is:

• Suppose the year is Y .

• Calculate a = Y mod 19, b = Y mod 4, c = Y mod 7.

• Calculate d = (19a+ 24)mod30 and e = (2b+ 4c+ 6d+ 5)mod7

• If d+ e < 10 then easter will fall on the (d+ e+ 22)th March, otherwise the (d+ e− 9)th of
April.

• Exception: If the date calculated is April 26, then easter will be April 19 instead. (There is
a further exception in western (i.e. not orthodox) churches for certain April 25 dates, again
due to the Georgian calendar, which we ignore for simplicity.)

a) Calculate the easter day for 2010 and for 1968.
b) Show, by finding explicitly years for which this holds, that the date may lie on March 23. (March
22 is possible but does not occur between 1900 and 2099.)
c) Assuming the formula would work for any year (not just 1900-2099), what is the smallest period,
after which we can guarantee that the sequence of dates repeats?

Exercise 6. Let p(x) = x3− 6x2 + 12x− 3 and α ∈ R a root of p(x). (Calculus shows there is only
one real root.)
a) Let f(x) ∈ Q[x] be any rational polynomial and g(x) = f(x) mod p(x). Show that f(α) = g(α).
Note: We can therefore calculate with polynomials modulo p(x) and have x play the role of α –
for example when calculating α5 we note that x5 mod p(x) = 75x2 − 270x + 72, therefore α5 =
75α2 − 270α+ 72.
b) Calculate (x− 2)3 mod p. What can you conclude from this about α?

Exercise 7. In this problem we are working modulo 3. Consider the polynomial f(x) = x2 − 2.
a) Determine the nine possible remainders when dividing any polynomial by f modulo 3.
b) Let R be the set of these remainders with addition and multiplication modulo f and modulo 3.
Construct the addition and multiplication table.
c) Show that the polynomials of degree zero create a subring. We can identify this subring with Z3.
d) Show that the equation y2 + 1 = 0 has no solution in Z3.
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e) Show that the equation y2 + 1 = 0 has a solution in R. (We therefore could consider R as Z3[i].)
f) Show that every nonzero element of R has a multiplicative inverse.

Exercise 8. Let F = Z2 be the field with two elements. Show that the rings (actually, both are
fields – you don’t need to show this) F[x]/

〈
x3 + x+ 1

〉
and F[x]/

〈
x3 + x2 + 1

〉
are isomorphic.

Hint: In the second ring, find an element α such that α3+α+1 = 0 and use this to find how to map
I +x from the first ring. Then extend in the obvious way to the whole ring. You are not required to
check that the whole addition/multiplication tables are mapped to each other (which would be rather
tedious), just test a handful of cases.

Exercise 9. Let R = Z[i] =
{
a+ b

√
−1 | a, b ∈ Z

}
. We define d(a+bi) := (a+bi)·(a+ bi) = a2+b2.

a) Show: For x, y ∈ R there are q, r ∈ R such that x = qy + r with r = 0 or d(r) < d(y), i.e. R
is a euclidean ring. (Hint: Consider R as points in the complex plane and for a, b ∈ R choose
q := m+ ni ∈ R such that |a/b− (m+ ni)| ≤ 1/

√
2.)

b) Determine the gcd of 7 + i and −1 + 5i.
(If you want to do complex arithmetic in GAP, you can write E(4) to represent i.)
Exercise 10.

Exercise 11. Show that the following polynomials ∈ Z[x] are irreducible, by considering their
reductions modulo primes.

1. x5 + 5x2 − 1

2. x4 + 4x3 + 6x2 + 4x− 4

3. x7 − 30x5 + 10x2 − 120x+ 60

Exercise 12. The following polynomials are irreducible (i.e. have no proper factors of degree ≥ 1)
over the field Z2:

x2 + x+ 1, x3 + x+ 1, x4 + x+ 1

The corresponding quotient rings Q := Z2[x]/ 〈p(x)〉 therefore are fields (with respectively 4,8 and
16 elements). For each of these fields Q (with 2n elements) show (by trying out multiplication
of elements in Q) that there is an element α ∈ Q such that α2n−1 = 1 but αm 6= 1 for all
0 < m < nn − 1. (Such an element α is called a primitive root. All finite fields have primitive
roots, which will be shown in a more advanced course. Primitive roots are important in many
applications. When creating finite fields in GAP, it actually represents all nonzero elements as
powers of a primitive root. See for example the output of the command Elements(GF(8)); which
will list all elements of the field with 8 elements.)

Exercise 13. Suppose we have two device for producing random numbers from a chosen set. The
first device produces the (nonnegative) integers a1, . . . , am (duplicates permitted) each with proba-
bility 1/m, the second device the numbers b1, . . . , bn each with probability 1/n. (E.g. a standard die
produces 1, . . . , 6 each with probability 1/6.
a) We define two rational polynomials, f =

∑m
i=1 x

ai, g =
∑n
i=1 x

bi. Assume that fg =
∑
i pix

i.
Show that pi/(mn) is the probability that an independent run of both devices produces numbers that
sum up to i.
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We now want to study, how one could achieve certain probability distributions in different ways.
For this we want to prescribe the product p = fg and determine whether this product can be ob-
tained from polynomials f and g, both of which can be written in the form

∑d
i=1 x

ci. We call such
a polynomial d-termable. Because Z[x] is a UFD, we can do this by looking at the factorization of
p into irreducibles.
b) Suppose that p = (x6 + x5 + x4 + x3 + x2 + x)2 (the sum probabilities when rolling two standard
dice). We want to see whether the same sum probabilities can also be obtained by rolling two cubes
which are differently labelled. Using the fact that

x6 + x5 + x4 + x3 + x2 + x = x(x+ 1)(x2 + x+ 1)(x2 − x+ 1)

as a product of irreducibles. Determine all possibilites for factors f and g, both with constant term
0 (i.e. no outcome would be 0), that yield this particular p and can be written in the specified form.
Show that there is one other pair of dice (called Sicherman dice), which will produce the same
probabilities of sums.
Doing this by hand is getting tedious rather quickly and we want to use a computer. In GAP, the
following function checks whether a polynomial f is d-termable:

dtermable:=function(f,d)
f:=CoefficientsOfUnivariatePolynomial(f);
return ForAll(f,i->i>=0) and Sum(f)=d;

end;

For a polynomial p, the following function return all divisors of p

divisors:=p->List(Combinations(Factors(p)),x->Product(x,p^0));

With these commands, one could solve part b) for example in the following way:

gap> p:=(x+x^2+x^3+x^4+x^5+x^6)^2;;
gap> Filtered(divisors(p),i->dtermable(i,6) and Value(i,0)=0

and dtermable(p/i,6) and Value(p/i,0)=0);

c) Suppose we repeat b) but with standard labeled tetrahedra (faces 1-4), octahedra (faces 1-8) and
dodecahedra (faces 1-20). Are there analogues of the Sicherman dice?
d) Now consider an equal distribution of the numbers 1 to 36. (I.e. p:=Sum([1..36],i->x^i);). Is
it possible to produce this equal distribution with two cubes? If all faces are labelled positive? What
about a dodecahedron and a tetrahedron?
e) Is there (apart from replacing one pair of dice with a pair of Sicherman dice) an analogue of
Sicherman dice for rolling three dice?

Exercise 14. Let R be a ring, I C R a prime ideal and ν : R → R/I the natural homomorphism.
We define θ : R[x]→ (R/I)[x] by

∑
aix

i 7→
∑

(I + ai)xi ∈ (R/I)[x].
a) Show that θ is a ring homomorphism.

b) Let f ∈ R[x] be monic (i.e. leading coefficient 1). Show that the degree distribution of a factor-
ization of fθ is a refinement of the degree distribution of a factorization of fθ. (In particular if fθ
is irreducible, then also f is irreducible.)
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Lets look at this in an example. We set R = Z and consider I = 〈p〉 C Z. The following example
shows, how to evaluate θ in GAP:

gap> x:=X(Rationals,"x");;
gap> f:=x^4+3*x+1;; # some polynomial
gap> r:=Integers mod 2;; # factor ring
gap> y:=X(r);; # create a polynomial variable over the factor ring.
gap> fr:=Value(f,y); # this evaluates f theta
x_1^4+x_1+Z(2)^0
gap> List(Factors(fr),Degree); # 1 factor of degree 4
[ 4 ]

We see that f is irreducible mod 2 and therefore irreducible over Z.
For another example, let f = x6 + rx4 + 9x2 + 31. Then f reduces modulo 2 in two factors

of degree 3 and modulo 3 in two factors of degree 2. The only way both can be refinements of the
degree distribution over Z is if f is irreducible.

c) Show that the following polynomials ∈ Z[x] are irreducible:

1. x5 + 5x2 − 1

2. x4 + 4x3 + 6x2 + 4x− 4

3. x7 − 30x5 + 10x2 − 120x+ 60

(Does this always work? No — one can show that there are irreducible polynomials, for example
x4 − 10x2 + 1, which modulo every prime splits in factors of degree 1 or 2.)

Exercise 15. Find all rational solution to the following system of equations:

{x2y − 3xy2 + x2 − 3xy = 0, x3y + x3 − 4y2 − 3y + 1 = 0}

You may use a computer algebra system to calculate resultants or factor polynomials, for example
in GAP the functions Resultant and Factors might be helpful. (See the online help for details.)

Exercise 16. Consider the curve, described in polar coordinates by the equation r = 1 + cos(2θ).
We want to describe this curve by an equation in x and y:
a) Write equations for the x- and y-coordinates of points on this curve parameterized by θ.
b) Take the equations of a) and write them as polynomials in the new variables sin θ = z and
cos θ = w.
c) Using the fact that z2 + w2 = 1, determine a single polynomial in x and y whose zeroes are the
given curve. Does this polynomial have factors?

Exercise 17. (This problem is to illustrate a reason for having different monomial orderings. You
don’t need to submit the full results, but just a brief description of what happens.)
Let I =

〈
x5 + y4 + z3 − 1, x3 + y2 + z2 − 1

〉
. Compute (e.g. with GAP) a (reduced) Gröbner basis

for I with respect to the lex and grlex orderings. Compare the number of polynomials and their
degrees in these bases.
Repeat the calculations for I =

〈
x5 + y4 + z3 − 1, x3 + y3 + z2 − 1

〉
(only one exponent changed!)
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Exercise 18. Let R = Q[x, y, z] and I =
〈
x2 + yz − 2, y2 + xz − 3, xy + z2 − 5

〉
C R. Show that

I + x is a unit in R/I and determine (I + x)−1.

Exercise 19. A theorem of Euclid states, that for a triangle ABC the lines bisecting the sides
perpendicularly intersect in the center of the outer circle (the circle through the vertices) of the
triangle. Prove this theorem using coordinates and polynomials.
Hint: For reasons of symmetry, it is sufficient to assume that two of the perpendicular lines in-
tersect in this point, or that the center lies on each perpendicular line. You may also assume by
scaling and rotating that A = (0, 0) and B = (0, 1).

A

B

C

M
AB

M
AC

M
BC

O

Exercise 20. Consider three points A = (a, d), B = (b, e), C = (c, f) in the plane, not on one line.
Determine a formula for the coordinates of the center of the circle through these three points.

Exercise 21. If G is a lex Gröbner basis (with y > xi) for J , then G ∩ R (the polynomials not
involving y) is a basis for J ∩R.
a) Let f = x3z2 + x2yz2 − xy2z2 − y3z2 + x4 + x3y − x2y2 − xy3 and
g = x2z4 − y2z4 + 2x3z2 − 2xy2z2 + x4 − x2y2.
Compute 〈f〉 ∩ 〈g〉.
b) Compute gcd(f, g). (Hint: Show that 〈f〉 ∩ 〈g〉 = 〈lcm(f, g)〉.)
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3

-

Groups

This book, similar to many newer textbooks, considers groups only after rings. This is not to stop
any instructor to start with groups (as many good textbooks do) it just might be necessary to
talk a little bit about integers and modular arithmetic (some of it described here in the chapter on
rings) before. One of the places in which groups differ from rings is that many typical ring elements
encountered in an undergraduate course (such as integers, or polynomials) have been defined in
earlier courses without any reference to algebraic structures. Group elements on the other hand
more often only exist in the context of a group. In many cases it is therefore necessary to define a
group first, before one can work with its elements. This is reflected in the structure of this chapter
which initially focuses on the creation of different kinds of groups before actually describing what
can be done with.

3.1 Cyclic groups, Abelian Groups, and Dihedral Groups

Note: The IsFpGroup functionality in this section will be available only in GAP 4.5, in earlier
versions it is necessary to stick with the default behaviour of Pc groups.

The easiest examples of groups are cyclic groups and units of integers modulo m. Because groups
in GAP are written multiplicatively, cyclic groups cannot be simply taken to be Integers mod m,
but need to be created as a multiplicative structure, this is done with the command CyclicGroup.
There is however one complication: Outside teaching mode (see below), cyclic groups are created
as so-called PC groups, see section 3.21; this means that such a group will not have one generator,
but possibly multiple ones which might have coprime orders or be powers of each other.

Such a representation will be confusing to a student who has not yet seen the fundamental
theorem of finite abelian groups. Because of this it is preferrable to create the groups as finitely
presented groups – section 3.11, this means simply that the group has only one generator and
every element is a power of this generator. This can be acchieved by giving an extra first argument
IsFpGroup, for example:

gap> G:=CyclicGroup(IsFpGroup,6);
<fp group of size 6 on the generators [ a ]>
gap> Elements(G);
[ <identity ...>, a^-1, a, a^-2, a^2, a^3 ]
gap> List(Elements(G),Order);
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[ 1, 6, 6, 3, 3, 2 ]
gap> GeneratorsOfGroup(G)[1];
a

As the example shows, the attribute GeneratorsOfGroup of such a group is a list of length one,
containing the generator.

Abelian groups, as direct product of cyclic groups, can be created similarly via AbelianGroup
with an argument listing the orders of cyclic factors, i.e. AbelianGroup(IsFpGroup,[2,4]) creates
C2 × C4. The natural generating elements can be obtained via the attribute GeneratorsOfGroup.

gap> G:=AbelianGroup(IsFpGroup,[2,4,5]);
<fp group of size 40 on the generators [ f1, f2, f3 ]>
gap> gens:=GeneratorsOfGroup(G);
[ f1, f2, f3 ]
gap> List(gens,Order);
[ 2, 4, 5 ]

The same applies to dihedral groups, which are created using DihedralGroup(IsFpGroup,n),
though for many applications actually might be better represented as permutation groups, see
section 3.9.

gap> ShowMultiplicationTable(DihedralGroup(IsFpGroup,8));
* | <id> r^-1 r s r^2 r*s s*r s*r^2
------+------------------------------------------------
<id> | <id> r^-1 r s r^2 r*s s*r s*r^2
r^-1 | r^-1 r^2 <id> s*r r s s*r^2 r*s
r | r <id> r^2 r*s r^-1 s*r^2 s s*r
s | s r*s s*r <id> s*r^2 r^-1 r r^2
r^2 | r^2 r r^-1 s*r^2 <id> s*r r*s s
r*s | r*s s*r^2 s r s*r <id> r^2 r^-1
s*r | s*r s s*r^2 r^-1 r*s r^2 <id> r
s*r^2 | s*r^2 s*r r*s r^2 s r r^-1 <id>

Teaching Mode In teaching mode, all of the constructions in this section will default to IsFpGroup,
i.e. it is sufficient to call CyclicGroup(12).

3.2 Units Modulo

One of the most frequent examples of groups are the unit groups Z∗m. These can be constructed
from the corresponding ring via the command Units. (Of course Units applies to any ring, however
GAP might not always have a feasible method to determine, or represent the units. So for example,
there is no representation for the group of nonzero rationals Q∗, even though the elements exist.)

gap> Units(Integers mod 12);
<group with 2 generators>

GAP chooses a small generator set for such unit groups, though this can be ignored.
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3.3 Groups from arbitrary named objects

The first examples of a group given to students often hide any element structure behind names.
The easiest way to construct such objects in GAP is to construct them in another representation,
and to use the renaming feature (section 1.5) to have GAP print them in the desired way.

A typical example of this (from Gallian’s textbook [Gal02]) would be the symmetries of a square,
consisting of the rotations R0, R90, R180, R270, as well as four reflections H,V,D,D′. The follow-
ing example creates this group in GAP, using permutations of degree 4 to encode the arithmetic.
(Caveat: GAP operates from the right, while many textbooks operate from the left. To ensure the
product D = H ·R90, the permutations encode the reverse rotation from the textbook.)

gap> R90:=(1,2,3,4);;R180:=R90^2;;R270:=R90^3;;R0:=();;
gap> H:=(1,4)(2,3);;D:=H*R90;;V:=H*R180;;DP:=H*R270;;
gap> SetNameObject(R0,"R0");
gap> SetNameObject(R90,"R90");
gap> SetNameObject(R180,"R180");
gap> SetNameObject(R270,"R270");
gap> SetNameObject(H,"H");
gap> SetNameObject(V,"V");
gap> SetNameObject(D,"D");
gap> SetNameObject(DP,"D’");
gap> G:=Group(R90,H);
Group([ R90, H ])
gap> Elements(G);
[ R0, D, V, R90, D’, R180, R270, H ]
gap> H*R90;
D

3.4 Basic operations with groups and their elements

As with any structure, Size (or Order) will determine the cardinality of a group. When applied
to a group element, it produces the elements order. One (or Identity) returns the groups identity
element. IsAbelian tests commutativity. (Similarly, but far more advanced, IsSolvableGroup,
IsNilpotentGroup.)

Elements returns a list of its elements (which can be processed, for example, using the List
operator.

gap> g:=Units(Integers mod 21);
<group with 2 generators>
gap> Order(g);
12
gap> One(g);
ZmodnZObj( 1, 21 )
gap> e:=Elements(g);
[ ZmodnZObj( 1, 21 ), ZmodnZObj( 2, 21 ), ZmodnZObj( 4, 21 ),
ZmodnZObj( 5, 21 ), ZmodnZObj( 8, 21 ), ZmodnZObj( 10, 21 ),
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ZmodnZObj( 11, 21 ), ZmodnZObj( 13, 21 ), ZmodnZObj( 16, 21 ),
ZmodnZObj( 17, 21 ), ZmodnZObj( 19, 21 ), ZmodnZObj( 20, 21 ) ]

gap> Order(e[3]);
3
gap> List(e,Order);
[ 1, 6, 3, 6, 2, 6, 6, 2, 3, 6, 6, 2 ]
gap>List(e,x->Position(e,Inverse(x)));
[ 1, 7, 9, 10, 5, 11, 2, 8, 3, 4, 6, 12 ]

For a group or list of elements, ShowMultiplicationTable returns the multiplication table (see
section 2.6).

gap> ShowMultiplicationTable(Units(Integers mod 8));
* | ZnZ(1,8) ZnZ(3,8) ZnZ(5,8) ZnZ(7,8)
---------+------------------------------------
ZnZ(1,8) | ZnZ(1,8) ZnZ(3,8) ZnZ(5,8) ZnZ(7,8)
ZnZ(3,8) | ZnZ(3,8) ZnZ(1,8) ZnZ(7,8) ZnZ(5,8)
ZnZ(5,8) | ZnZ(5,8) ZnZ(7,8) ZnZ(1,8) ZnZ(3,8)
ZnZ(7,8) | ZnZ(7,8) ZnZ(5,8) ZnZ(3,8) ZnZ(1,8)

3.5 Left and Right

While it might be tempting to hide this in an appendix, it is probably better to state it upfront
before encountering nonabelian groups: there are two different ways of considering group elements
as symmetry actions, which are used in the literature. The first considers them as functions and,
following the function notation used in calculus, would compose the elements G. and H. as g(h(x)) =
(G◦h)(x). The second, motivated for example from writing group elements as words in generators,
would write that image as xgh = xg◦h. These two different compositions than are typically written
as product GH. Either way is consistent, but – apart from the definition of arithmetic, for example
for permutations – it’s effects spread out to make for example left cosets or right cosets is a
more natural objects. It even can have an effect on how homomorphisms will be written, and how
conjugation is defined (GAP uses gh = h−1gh).

Research literature in group theory tends to use the second definition more frequently, therefore
GAP uses this definition. This is hard coded into the system (not just into the functions, but into
the definitions of the functions) and essentially unchangeable.

Unfortunately most undergraduate textbooks take the first definition. This might look like a
recipe for disaster, but students are intelligent and – in the authors experience – actually cope very
easy with this. The handout section of this chapter contains a handout about right operation versus
left operation, it also defines the product of permutations in this context, which might be easiest to
use in the course overall: typically there are a few places in a textbook which gives explicit examples
of permutation products (beyond the actual definition), if a multiplication table is given the only
effect would be a swap of rows and columns.

The author is therefore confident that this discrepancy can be overcome easily in a class situa-
tion. It might be helpful to give the analogy of text written in English versus Hebrew or Arab: the
contents are the same even though one is written from left to right and the other from right to left.
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3.6 Groups as Symmetries

One of the first examples of a group encountered by students is often a set of symmetries (which
are given names), the multiplication rules then are deduced from an (physical) object and recorded
in a multiplication table. This format is not the best to work with in exercises, as multiplication
(or inverses) can only be determined by reference to the physical object or the multiplication table;
nevertheless this can be a convenient tool for initial exploration. As the computer clearly does not
have physical objects, the multiplication for such groups must be given differently. Formally this
could be considered as transition to an isomorphic copy of the group, though it might be better to
mention the use of a homomorphism only later in a course.

There are basically three ways of describing such groups (assuming that the full set of symmetries
is already known, otherwise see section 3.19):

Multiplication Tables If we determine a multiplication table, we can simply form a correspond-
ing group with elements names as desired. Clearly this is limited to very small groups. See
section 3.7.

Permutations Often objects whose symmetries are considered have substructures, which are per-
muted by these symmetries and whose permutation describes the symmetries uniquely (for
example: The sides of a triangle, the corners of a cube, the faces of a dodecahedron). In this
case, by labelling these objects with integers 1, 2, . . ., every symmetry can be represented by
a permutation and the group be considered as permutation group, see section 3.9. (Caveat:
Because of the convention of action on the right, the product ab means first apply a, then
apply b.)

Matrices If the symmetries can be represented as linear transformations of a vector space (for
example if the symmetries are rotations or reflections preserving an object in 3-dimensional
space) one can also represent the symmetries by a group of matrices. (The action on the right
means that these will be matrices acting on row vectors.) In general, however, it is hard to
write down concrete matrices for group elements as it requires to calculate image coordinates
which often are non-rational, unless the symmetries are 90◦ rotations.

Of these, permutations are probably the easiest way to describe smallish nonabelian groups. In
terms of writing and arithmetic effort, often permutations are the representation of choice. Unfor-
tunately textbooks often introduce permutations only in the context of symmetric and alternating
groups later in the course. Because of this I typically start the chapter on groups with a brief
description of permutations and their multiplication which can be found in the handouts section.

3.7 Multiplication Tables

A multiplication table is a square integer matrix of dimension n, which describes the products of a
set of n elements. For such a matrix, GroupByMultiplicationTable creates a group given by this
table (and fail if the result is not a group). The elements of the group are displayed as mi for
i = 1 . . . , |G| with no particular numbering given to the identity element or inverses. Because all
elements are listed as generators, they also can be accessed as g.n , where n is the number.

gap> m:=[ [ 4, 3, 2, 1 ], [ 3, 4, 1, 2 ], [ 2, 1, 4, 3 ], [ 1, 2, 3, 4 ] ];;
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gap> g:=GroupByMultiplicationTable(m);
<group of size 4 with 4 generators>
gap> Elements(g);
[ m1, m2, m3, m4 ]
gap> One(g);
m4
gap> g.2*g.3;
m1
gap> m:=[[1,2,3,4,5],[5,1,2,3,4],[4,5,1,2,3],[3,4,5,1,2],[2,3,4,5,1]];
gap> g:=GroupByMultiplicationTable(m);
fail

As a multiplication table is actually a rather large object, the recommended way for repre-
senting groups on the computer therefore is to construct them in a different way (for example as
permutations), but change the display of these objects to the names given to the symmetries in the
example. (Section 1.5 describes the renaming functionality in a more general context.)

To construct a multiplicative structure from a table and test properties, one can use the function
MagmaByMultiplicationTable and then

gap> m:=[ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ];
[ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ]
gap> g:=MagmaByMultiplicationTable(m);
<magma with 4 generators>
gap> IsAssociative(g);
true
gap> One(g);
m1
gap> List(Elements(g),Inverse);
[ m1, m2, m3, m4 ]
gap> m:=[[1,2,3,4,5],[5,1,2,3,4],[4,5,1,2,3],[3,4,5,1,2],[2,3,4,5,1]];;
gap> g:=MagmaByMultiplicationTable(m);
<magma with 5 generators>
gap> IsAssociative(g);
false

(Note that these objects however are not recognized as “groups” by GAP, IsGroup will return
false, even if mathematically they are groups. This means in particular that many group theoretic
operations will not be available for such objects.)

3.8 Generators

While a group is a set of elements, it quickly becomes unfeasible to store (or work with) all group
elements. Similar to the use of bases in linear algebra, computational group theory therefore tends to
describe a group by a set of generators. These generators in general can be chosen rather arbitrary,
as long as they actually generate the group in question.

While this idea is very natural, unfortunately most textbooks downplay the idea of group
generators, or consider only the case of cyclic groups. This is surprising, as the proof actually
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provides another example of the subgroup test. A handout is provided which provides the necessary
definitions and proofs, see 3.23. Of course this means implicitly, that groups given by generators
always are contained in some large (not explicitly defined) group, e.g. the symmetric group on
infinitely many points.

The dot operator . can be used as a shorthand to access a groups generators, i.e. G.1 returns
the first generator and so on.

Once the concept of generators has been defined, an obvious computer use is to factor group
elements in the generators. See section 3.16.

3.9 Permutations

Permutations in GAP are written in cycle notation with parentheses, cycles of length one should
be omitted. The identity permutation however is written as (). Permutations are multiplied with
the usual star operator. One needs to keep in mind, however, that the multiplication corresponds
to an action from the right, i.e. the product is (1, 2) · (2, 3) = (1, 3, 2).

The handout section below (section 3.23) provides a self-contained description of permutations,
cycle form, and permutation multiplication, aimed at beginning students, in which these conventions
are used.

Similarly, the inverse is computed as power with exponent −1, or using the operation Inverse.
The image of a point p under a permutation g is specified as p ^g .

If the degree gets very large (so large that a user would be unlikely to want to see the whole
permutation) GAP will display by default only part of the permutation and use the [...] notation.
While one can determine the largest moved point of a permutation (using LargestMovedPoint),
the permutations don’t carry a natural degree, i.e. all permutations are considered as elements of
the symmetric group on infinitely many points..

To construct a permutation group, one simply takes generating permutations, and uses the
Group function.

Generators can also be given as a list, in this case it is necessary to provide the identity element
as a second argument to cope with the case of an empty generating set.

GAP contains predefined constructors for symmetric and alternating groups.
For a description of how to construct symmetry groups of objects or incidence structures see

section 3.19.

3.10 Matrices

Matrices are created as lists of lists as described in section 1.3, matrix groups are created from
matrices in the same way as permutation groups from permutations.

The groups GL, SL, as well GSp, GO and GU are predefined, PGL (etc.) define permutation
groups induced by the projective action on 1-dimensional subspaces.

At the time of writing this, essentially all calculations for matrix groups utilize the natural
permutation representation on vectors. In particular, GAP has no facilites for infinite matrix groups.
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3.11 Finitely Presented Groups

A very convenient way to represent groups is as words in generators, subject to identities (relations
or relators). This is the natural way how groups arise in topology, also some (more advanced)
textbooks use this description. It also is a very convenient way to construct ”bespoke” groups with
desired properties. There are however a caveats to using groups in this way: A famous result of
Boone and Novikov [] shows, that in general most questions (even the question whether the group is
trivial) cannot be answered by a computer (assuming that computers can be represented formally
by a Turing machine). Because of this, some of the functions in GAP might seem initially to be
reluctant do do anything concrete (for example, by default group elements are multiplied simply
by concatenating the words with no simplification taking place) and need to be nudged to do the
right thing.

On the other hand, once nudged, the formal impossibility problems typically are not really an
issue, as the presentations occurring in a teching context typically will be harmless.

Groups constructed in this way are called finitely presented groups, they are created as quotient
of afree group. (In the context of an introductory class it might be best to take the free group simply
as a formality to obtain initially letters, instead of trying to define generically what a free group
is.)

As mentioned before in the case of indeterminates of polynomial rings (see section 2.7 ), the
generators of the free group (and of a finitely presented group) are elements which are printed like
short variables, though the corresponding variables have not been defined in the system. This can
be done by the command AssignGeneratorVariables.

The defining identities then have to be written as a list of relators in these generators. A very
convenient alternative (assuming that the names of the generators are single letters) is to write
relators or relations in a string, and to use the function ParseRelators to convert these into a list
of relators. In doing so the function assumes that change from upper to lower case (or vice versa)
means the inverse of the generator, and that a number (even if not preceded by a caret operator)
means exponentiation. This actually allows the almost direct use of many presentations as they
were printed in the literature.

The group finally is obtained by taking the quotient of the free group by list of realtors. Note,
that the elements of the free group are different from the elements of the resulting finitely presented
group. (The cleanest way of connecting the two objects is probably to construct a homomorphism:)
again global variables are not assigned automatically to the generators, but can be done using
AssignGeneratorVariables.

It can be very convenient (or at least avoiding confusion) to also issue the command SetReducedMultiplication(G).
What this does is to reduce (using a rewriting system for a shortlex ordering) to reduce any product
immediately when it is formed. Otherwise it is possible that this same element could be printed in
different ways (though an equality test would discover it).

This functionality of course cannot circumvent the impossibility results. While this functionality
will work very well for small groups given by a nice presentation, a random presentation (or errors
in the presentation which cause the group to be much larger or even infinite) it might cost the
system to act very slowly, or even to terminate calculations with an error message.
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3.12 Subgroups

Subgroups in GAP are typically created and stored by giving generators of the subgroup. The
function Subgroup(group,generators) constructs a subgroup with given generators. Compared
with Group, the only difference is that

• Subgroup tests whether the generators are actually in the group

• A subgroup can inherit some properties from the group (e.g. information about the permu-
tation action, the groups order, or solvability) to speed up calculations.

Otherwise it behaves not differently than Group, which could be used in place. (If a subgroup
is created, its Parent is the group it was made a subgroup of.) IsSubset(group,sub) can test
inclusion of subgroups.

Certain characteristic subgroups are obtained as Centre, DerivedSubgroup; for a subgroup in a
group, the commands Normalizer(group,sub) and Centralizer(group,sub) returns associated
subgroups.

The command AllSubgroups will return a list of all subgroups of a group. In general this list is
very long, and it is preferrable to obtain the subgroups only up to conjugacy using ConjugacyClassesSubgroups
(see 3.13). IntermediateSubgroups(group,sub) returns all subgroups between two groups, see the
manual for a documentation of the output, which also contains mutual inclusion information.

gap> AllSubgroups(DihedralGroup(IsPermGroup,10));
[ Group(()), Group([ (2,5)(3,4) ]), Group([ (1,2)(3,5) ]),
Group([ (1,3)(4,5) ]), Group([ (1,4)(2,3) ]), Group([ (1,5)(2,4) ]),
Group([ (1,2,3,4,5) ]), Group([ (1,2,3,4,5), (2,5)(3,4) ]) ]

Various series of a subgroup can be obtained DerivedSeries, CompositionSeries, ChiefSeries,
LowerCentralSeries, UpperCentralSeries

3.13 Subgroup Lattice

GAP provides very general functionality to determine the subgroup structure of a group. To reduce
storage this is typically done up to conjugacy, but extra information is provided with which one
can access all subgroups and their inclusion information. In all of the following cases G is a finite
group.

ConjugacyClassesSubgroups(G ) returns a list of conjugacy classes of subgroups of G . For each
class C in this list Representative(C ) returns one subgroup in this class. Stabilizer(C ) returns
the normalizer of this Representative in G . Size(C ) returns the number of conjugate subgroups
in the class (i.e. the index of the normalizer). While it is stored and displayed in compact form, the
C also acts like a list (which cannot be modified), if 1 ≤ m ≤ Size(C ), then C [m ] returns the m-th
subgroup in the class. (The represenattive always is the first subgroup.

(Caveat: Elements(C ) also returns a list of all subgroups in the class, but this list is sorted;
this means that the numbering is inconsistent!)

NormalSubgroups(G ) returns a list of all normal subgroups. (Here no classes are needed, since
the groups are normal.)
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gap> g:=SymmetricGroup(4);;
gap> c:=ConjugacyClassesSubgroups(g);
[ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
Group( [ (3,4), (1,2)(3,4) ] )^G, Group( [ (1,3,2,4), (1,2)(3,4) ] )^G,
Group( [ (3,4), (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ])^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]

gap> C:=c[6];
Group( [ (3,4), (1,2)(3,4) ] )^G
gap> Representative(C);
Group([ (3,4), (1,2)(3,4) ])
gap> Size(Representative(C));
4
gap> Size(C);
3
gap> C[1];
Group([ (3,4), (1,2)(3,4) ])
gap> C[2];
Group([ (2,4), (1,3)(2,4) ])
gap> C[3];
Group([ (2,3), (1,4)(2,3) ])
gap> NormalSubgroups(g);
[ Group(()), Group([ (1,4)(2,3), (1,3)(2,4) ]),
Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]), Sym( [ 1 .. 4 ] ) ]

The subgroups in the different classes obtained as C [m ] are ordinary GAP subgroups, and inclu-
sion information can be tested using IsSubset. If full lattice information is desired, however it is
easier (and faster) to have GAP compute this in one go:

LatticeSubgroups(G ) determines an object L that represents the lattice of subgroups of G .
(The classes of subgroups can be also obtained from this object as ConjugacyClassesSubgroups(L ).)
For such a lattice object, MaximalSubgroupsLattice(L ) returns a list M that describes maximality
inclusion. For the representative in class number m, the m-th entry of M is a list that indicates its
maximal subgroups. Each subgroup is represented by a list of length 2 of the form [a, b], indicating
that it is the b-th subgroup in class a.

gap> L:=LatticeSubgroups(g);
<subgroup lattice of Sym( [ 1 .. 4 ] ), 11 classes, 30 subgroups>
gap> M:=MaximalSubgroupsLattice(L);
[ [ ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 1, 1 ] ],
[ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ] ], [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ],
[ [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ] ],
[ [ 7, 1 ], [ 6, 1 ], [ 5, 1 ] ],
[ [ 5, 1 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ],
[ [ 10, 1 ], [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 8, 1 ], [ 8, 2 ], [ 8, 3 ],

[ 8, 4 ] ] ]
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gap> M[6];
[ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ]
gap> IsSubset(Representative(c[6]),c[3][1]);
true
gap> IsSubset(Representative(c[6]),c[3][2]);
false

In this example, the representative for class 6 has three maximal subgroups, namely number 1
and 6 in class 3 and number 3 in class 2. (Inclusion of conjugates is smimilar but not explicit.)

The easiest way to get a graphical representation of the lattice is by using the command
DotFileLatticeSubgroups(L ,"filename"), where "filename" is the name (including path –
see 1.4) of the file to which the output is to be written. The output describes a graph in the
graphviz format, see http://www.graphviz.org or http://en.wikipedia.org/wiki/Graphviz,
whose vertices are the subgroups with edges indicating inclusion. (A further linear graph with ver-
tices labelled by subgroup orders is added to produce a proper linear display of the lattice.) Vertices
are labelled a−b indicating the b-th subgroup in class a. Square vertices indicate normal subgroups.

Multiple visualizers for this format exist. For example http://www.pixelglow.com/graphviz/
is a visualizer for OSX and http://wingraphviz.sourceforge.net/wingraphviz/ is one for Win-
dows.

In the example

gap> DotFileLatticeSubgroups(L,"tester.dot");

creates a file tester.dot, which (via the graphics program OmniGraffle1 for OSX) produces the
following diagram – note again the maximal inclusions of 2-3, 3-1 and 3-6 in 6-1.

1

2

3

4

6

8

12

24

1

2-1 2-2 2-3 3-13-2 3-33-4 3-5 3-6

4-1 4-24-3 4-4

5 6-16-2 6-37-17-2 7-3

8-1 8-28-3 8-4

9-19-2 9-3

10

11

Further hand editing without doubt could beautify the image.

1http://www.omnigroup.com/products/omnigraffle/
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Needless to say, the computations will fail if GAP cannot fit the information about all subgroups
into its memory. This is in particular the case if there are subgroups which are vector spaces of
high dimension.

3.14 Group Actions

Group actions are one of the prime reasons for the prominence of group theory, providing a formal
framework to describe symmetries of an object. Formally, an action of a group G on a domain Ω is
described by a function µ : Ω×G→ Ω such that

µ(ω, 1) = ω ∀ω ∈ Ω,
µ(µ(ω, g), h) = µ(ω, gh) ∀g, h ∈ G,ω ∈ Ω.

The reader will note that this describes an action on the right, as is the general convention in
GAP (unfortunately – see section 3.5 – this disagrees with many undergraduate textbooks, but is
following the predominant convention in the group theory literature), it also is consistent with the
way GAP handles permutation multiplication (section 3.9).

Group actions in GAP thus are implemented via a GAP function mu (omega ,g ), that calculates
the image of a point. (GAP will essentially trust that the function provided indeed implements a
group action, as there is no easy way of testing this.) While such a function can be provided by a
user, GAP itself already provides a series of actions:

OnPoints This function describes the action via the caret operator ^, i.e. OnPoints(p ,g )=p ^g .
This is for example the action of a permutation on points; the action of a group on its elements
or subgroups via conjugation (gh = h−1gh); or the action of a group of automorphisms on
its underlying group.

This is the default action (which GAP will substitute if no other action is specified.

OnRight This function describes the action via right multiplication, i.e. OnRight(p ,g )=p *g . This
is for example the action of a matrix group on (row) vectors; the (regular) action of a group
on its elements, or the action on the (right) cosets of a subgroup (see 3.17).

OnTuples For a list L of points, OnPoints(L ,g ) returns the list obtained by acting on all list
elements p ∈ L via OnPoints(p ,g ).

OnSets works similar as OnLines but sorts the result (recall from 1.3) that sets in GAP are repre-
sented simply by sorted lists).

Permuted acts on a list with a permutation by permuting the entries.

OnIndeterminates acts on polynomials with a permutation by permuting the index numbers of
the indeterminates (see 2.7).

OnLines describes the projective action of a matrix group on the 1-dimensional subspaces. We
consider a nonzero (row) vector as normed, if its first nonzero entry is 1. For a normed vector
p , OnLines(p ,g ) returns the normed scalar multiple of p *g .
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OnSubspacesByCanonicalBasis implements the (projective) action on general subspaces of the
row space. We define the canonical basis of a row space as the basis, obtained from the
Hermite Normal Form (i.e. the RREF) of the matrix whose rows are given by the vectors of
an arbitrary basis. (The theory of Hermite Normal forms shows that this is unique for the
subspace.) That is, for a matrix M , representing a list of row vectors, and a matrix g in a
matrix group this action returns the RREF of M *g .

The following functions are available in GAP to calculate orbits and stabilizers. In all cases G

is a group acting on the domain Omega (typically represented as a list) by the function mu , p is a
point in Omega :

Orbit(G ,p ,mu ) determines the orbit of p under G , i.e. the set of all images.
Orbits(G ,Omega ,mu ) returns the partition of Omega given by the orbits of G .
IsTransitive(G ,Omega ,mu ) checks whether all elements of Omega lie in the same orbit under

G .
Stabilizer(G ,p ,mu ) determines the stabilizer of p under G , i.e. the subgroup of those el-

ements of G that keep p fixed. For some of the predefined actions, in particular a group acting
on itself or permutation groups acting on points or lists or sets of points GAP implements special
methods to make stabilizer calculations efficient even in the case of huge groups. In the general case
the computation of a stabilizer needs to compute the orbit and thus is limited to cases in which
the orbit length (i.e. the stabilizer index) is small enough to fit into memory.

gap> g:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> Orbit(g,1,OnPoints);
[ 1, 2, 3 ]
gap> Orbit(g,[1,2],OnSets);
[ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ] ]
gap> Orbit(g,[1,2],OnTuples);
[ [ 1, 2 ], [ 2, 3 ], [ 2, 1 ], [ 3, 1 ], [ 1, 3 ], [ 3, 2 ] ]
gap> Stabilizer(g,2,OnPoints);
Group([ (1,3) ])
gap> Orbits(g,Cartesian([1..3],[1..3]),OnTuples);
[ [ [ 1, 1 ], [ 2, 2 ], [ 3, 3 ] ],

[ [ 1, 2 ], [ 2, 3 ], [ 2, 1 ], [ 3, 1 ], [ 1, 3 ], [ 3, 2 ] ] ]

The homomorphisms to permutation groups induced by group actions are described in sec-
tion 3.15.

(While unlikely to be needed for an undergraduate context, in general the syntax for group
actions in GAP is group ,[Omega ,]point ,[gens ,genimages ,] [mu ], with entries in brackes being op-
tional. Here Omega is the domain and mu the acting function. The argument pairs gens and
genimages specify the action via a homomorphic image – gens is a set of group generators and
genimages the images of these under a homomorphism that do the actual action.)
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3.15 Group Homomorphisms

There are essentially three ways of representing group homomorphisms in GAP. (Operations with
these homomorphisms then are regardless of the mode of their creation.) The following paragraphs
describe these different ways of creation:

Action homomorphisms

An action of a group G on a finite domain Ω induces an action homomorphism ϕ : G → SΩ to
the group of permutations on Ω. (See section 3.14 for the general setup of group actions.) Such
homomorphisms are probably the easiest to understand, as the image permutation can be obtained
by simply acting by one element g ∈ G on all points of Ω.

ActionHomomorphism(G ,Omega ,mu ) creates the homomorphism for the action of G on Omega

via the function mu . The group SΩ is represented as the symmetric group on the points 1, . . . , n;
where n = |Ω|, number x corresponding to the x-th element in the list Ω.

ActionHomomorphism(G ,Omega ,mu ,"surjective") (the last argument is the string “surjec-
tive”, the synonym “onto” may be used as well) creates the homomorphism with the same definition
but onto its image.

Action(G ,Omega ,mu ) returns the Image of the corresponding ActionHomomorphism.

gap> g:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> twopels:=[ [ 1, 2 ], [ 2, 3 ], [ 2, 1 ], [ 3, 1 ], [ 1, 3 ], [ 3, 2 ]
];
[ [ 1, 2 ], [ 2, 3 ], [ 2, 1 ], [ 3, 1 ], [ 1, 3 ], [ 3, 2 ] ]
gap> hom1:=ActionHomomorphism(g,twopels,OnTuples);
<action homomorphism>
gap> hom2:=ActionHomomorphism(g,twopels,OnTuples,"surjective");
<action epimorphism>
gap> Action(g,twopels,OnTuples);
Group([ (1,2,4)(3,6,5), (1,3)(2,5)(4,6) ])
gap> Image(hom1);
Group([ (1,2,4)(3,6,5), (1,3)(2,5)(4,6) ])
gap> Image(hom2);
Group([ (1,2,4)(3,6,5), (1,3)(2,5)(4,6) ])
gap> Range(hom1);
Sym( [ 1 .. 6 ] )
gap> Range(hom2);
Group([ (1,2,4)(3,6,5), (1,3)(2,5)(4,6) ])

Using generators

Since every element of a group can be written as product of generators (see 3.16), a homomorphism
ϕ : G→ H is defined uniquely by prescribing generators {gi} of G, as well as their images {gϕi } in
H. This is the default way how GAP represents homomorphisms that do not come from an action.
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GroupHomomorphismByImages(G ,H ,gens ,imgs ) creates such a homomorphism where gens is
the list of the gi and imgs the corresponding list of images. The resulting homomorphism has
Source equal G and Range equal H , i.e. it is not necessary for imgs to generate H .

GAP will test that this image assignment indeed corresponds to a homomorphism – if not the
function call will return fail. This test also can take substantial time in the case of larger groups.
The function GroupHomomorphismByImagesNC(G ,H ,gens ,imgs ) will skip this test (and trust the
user).

gap> g:=Group((1,2,3,4),(1,2));
Group([ (1,2,3,4), (1,2) ])
gap>
hom:=GroupHomomorphismByImages(g,g,[(1,2,3,4),(1,2)],[(1,4,3,2),(1,2)]);
[ (1,2,3,4), (1,2) ] -> [ (1,4,3,2), (1,2) ]
gap>
hom:=GroupHomomorphismByImages(g,g,[(1,2,3,4),(1,2)],[(1,4,3,2),(1,3)]);
fail

As the example shows, such homomorphisms are displayed simply by the lists of generators and
their images.

By prescribing images with a function

In some cases neither a suitable action, nor a decomposition into generators is easily possible. In
these cases GroupHomomorphismByFunction(G ,H ,fct ) can be used, where fct is a GAP function
that will be used to evaluate images.

Operations for group homomorphisms

Group homomorphisms are mappings. For a homomorphism phi : G → H and elements g ∈ G ,
respectively h ∈ H :

Image(phi ,g ) determines the image of g under phi . This also can be written as g ^phi ,
allowing us to have a group of homomorphisms act on another group.

Image(phi ) determines the image of G under phi , i.e. the group consisting of the set of all
images of elemnts of G .

Source(phi ) is the group on which phi is defined.
Range(phi ) return the group in which (by its definition) phi maps.
Image(phi ,g ) determines the image of the subgroup S ≤ G

PreImagesRepresentative(phi ,h ) determines one element x ∈ G , such that phi (x) = ( h).
PreImage(phi ,T ) determines for a subgroup T ≤ H the subgroup of G of all elements that

map into T .
IsInjective(phi ) (Synonym IsOneToOne(phi )) tests whether gvarphi is one-to-one.
IsSurjective(phi ) (Synonym IsOnto(phi )) tests whether gvarphi is onto.
Kernel(phi ) returns the kernel of phi as a subgroup of G .

gap> g:=Group((1,2,3,4),(1,2));
Group([ (1,2,3,4), (1,2) ])
gap> sets:=Combinations([1..4],2);
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[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ], [ 3, 4 ] ]
gap> hom:=ActionHomomorphism(g,sets,OnSets);
<action homomorphism>
gap> Image(hom,(1,2)); # note: [1,3] -- pos 2 -- is mapped to [2,3] -- pos 4
(2,4)(3,5)
gap> Image(hom);
Group([ (1,4,6,3)(2,5), (2,4)(3,5) ])
gap> Image(hom,DerivedSubgroup(g));
Group([ (1,3,2)(4,5,6), (1,6)(2,5), (1,6)(3,4) ])
gap> PreImagesRepresentative(hom,(2,4)(3,5));
(1,2)
gap> PreImage(hom,Group([(2,4)(3,5)]));
Group([ (1,2) ])
gap> IsInjective(hom);
true
gap> Range(hom);
Sym( [ 1 .. 6 ] )
gap> IsSurjective(hom);
false

3.16 Factorization

One of the things which become much easier with availability of a computer is the factorization of
group elements as words in generators. This has obvious applications towards the solving of puzzles,
the most prominent probably being Rubik’s cube.

The basic functionality is given by the command Factorization(G,elm ) which returns a
factorization of the element elm as a product of the generators of G . (So in particular, it is possible
to use Length to determine the length of such a word.) The factorization will be given as an element
of a free group. This free group is defined as the source of the attribute EpimorphismFromFreeGroup.

gap> g:=Group((1,2,3,4),(1,2));
Group([ (1,2,3,4), (1,2) ])
gap> Factorization(g,(1,3):names:=["T","L","M"]);
x1*x2*x1^2*x2
gap> g:=Group((1,2,3,4,5),(1,2));
Group([ (1,2,3,4,5), (1,2) ])
gap> Factorization(g,(1,2,3));
x1^-1*x2*x1*x2
gap> Length(last);
4
gap> Source(EpimorphismFromFreeGroup(g));
<free group on the generators [ x1, x2 ]>

It is possible to assign bespoke printing names (see section 3.11) via the option names, which is
appended with a colon in the argument list to the first call to Factorization or EpimorphismFromFreeGroup
(see section 3.15). Once names were assigned, they cannot be changed any more.
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gap> g:=Group((1,2,3,4,5),(1,2));
Group([ (1,2,3,4,5), (1,2) ])
gap> Factorization(g,(1,2,3):names:=["five","two"]);
five^-1*two*five*two
gap> EpimorphismFromFreeGroup(g);
[ five, two ] -> [ (1,2,3,4,5), (1,2) ]

Factorization returns a word in the generators of shortest length. To ensure this minimality,
it essentially needs to enumerate all group elements. The functionality therefore is in practice
limited to group sizes up to about 107. For larger groups a different approach is necessary which
heuristically tries to keep word length short, but neither guarantees, nor acchieves minimal length.
This is done by using the homomorphism functionality: PreImagesRepresentative(hom,elm )
returns an element that under hom maps to elm , which is exactly what we want.

gap> g:=SymmetricGroup(16);
Sym( [ 1 .. 16 ] )
gap> Size(g);
20922789888000
gap> hom:=EpimorphismFromFreeGroup(g:names:=["a","b"]);
[ a, b ] -> [ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,2) ]
b^-1*a^-1*b^-1*a^-1*b^-1*a*b^-1*a^-2*b^-1*a^-1*b^-1*a^-1*b^-1*a^
-1*b*a*b*a*b*a*b*a*b*a*b*a^-1*b*a^2*b*a*b^-1*a^-1

3.17 Cosets

Consistent with right actions, GAP implements right cosets only. Cosets are created with RightCoset(S,elm ),
or alternatively as product Selm . They are sets of elements and one ask for the explicit element
list, size, or intersect the sets.

gap> s:=SylowSubgroup(SymmetricGroup(4),2);
Group([ (1,2), (3,4), (1,3)(2,4) ])
gap> c:=RightCoset(s,(1,2));
RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),(1,2))
gap> Size(c);
8
gap> Elements(c);
[ (), (3,4), (1,2), (1,2)(3,4), (1,3)(2,4), (1,3,2,4), (1,4,2,3), (1,4)(2,3) ]
gap> d:=s*(3,4);
RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),(3,4))
gap> s=d;
true
gap> d:=s*(1,4);
RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),(1,4))
gap> Intersection(s,d);
[ ]
gap> Union(s,d);
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[ (), (3,4), (2,3), (2,3,4), (1,2), (1,2)(3,4), (1,2,4,3), (1,2,4), (1,3,2),
(1,3,4,2), (1,3)(2,4), (1,3,2,4), (1,4,3), (1,4), (1,4,2,3), (1,4)(2,3) ]

RightCosets(G,S ) returns a list of all cosets, it is possible to act on these by right multiplica-
tion.

gap> rc:=RightCosets(SymmetricGroup(4),s);
[ RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),()),
RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),(2,3)),
RightCoset(Group( [ (1,2), (3,4), (1,3)(2,4) ] ),(2,4,3)) ]

gap> hom:=ActionHomomorphism(SymmetricGroup(4),rc,OnRight);
<action homomorphism>
gap> Image(hom);
Group([ (1,3), (2,3) ])

CosetDecomposition(G ,S ) returns a partition of G into right cosets of S . The first cell consists
of the elements of S and the further cells each have their elements arranged correspondingly as
product s · rep for s ∈ S .

gap> CosetDecomposition(SymmetricGroup(4),s);
[ [ (),(3,4),(1,2),(1,2)(3,4),(1,3)(2,4),(1,3,2,4),(1,4,2,3),(1,4)(2,3) ],
[ (2,3),(2,3,4),(1,3,2),(1,3,4,2),(1,2,4,3),(1,2,4),(1,4,3),(1,4) ],
[ (2,4,3),(2,4),(1,4,3,2),(1,4,2),(1,2,3),(1,2,3,4),(1,3),(1,3,4) ] ]

RightTransversal(G,S ) returns a list of representatives of all cosets, stored very efficiently to
enable the creation of transversals of sizes far beyond the nominal memory capacity. In an abuse
of notation, it is allowed to act also on a transversal

gap> rt:=RightTransversal(SymmetricGroup(4),s);
RightTransversal(Sym( [ 1 .. 4 ] ),Group([ (1,2), (3,4), (1,3)(2,4) ]))
gap> Elements(rt);
[ (), (2,3), (2,4,3) ]
gap> hom:=ActionHomomorphism(SymmetricGroup(4),rt,OnRight);
<action homomorphism>
gap> Image(hom);
Group([ (1,3), (2,3) ])

3.18 Factor Groups

The “standard” way in GAP for creating factor groups is to use NaturalHomomorphismByNormalSubgroup(G,N )
which creates a homomorphism G → G/N . Alternatively, one can use FactorGroup(G,N ) to cre-
ate the factor group with the homomorphism stored in the attribute NaturalHomomorphism of the
factor group.

gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);
Group([ (1,2)(3,4), (1,3)(2,4) ])

84



gap> nat:=NaturalHomomorphismByNormalSubgroup(g,n);
[ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]
gap> f:=FactorGroup(g,n);
Group([ f1, f2 ])
gap> NaturalHomomorphism(f);
[ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]

The big caveat here is that GAP works hard in an attempt to find an efficient (in a computational
sense) representation for G/N which often has no obvious relation to the representation of G or to
N , it just is a group which is isomorphic to G/N . For beginners this likely will be very confusing.

GAP therefore offers a function FactorGroupAsCosets which creates a factor group consisting
of cosets, as defined. Standard functionality should be available for this group, though in larger
examples performance will be lower (which is very unlikely to be an issue at all in class).

gap> f:=FactorGroupAsCosets(g,n);
<group of size 6 with 2 generators>
gap> Elements(f);
[ RightCoset(Group( [ (1,2)(3,4), (1,3)(2,4) ] ),()),
RightCoset(Group( [ (1,2)(3,4), (1,3)(2,4) ] ),(1,2)),
RightCoset(Group( [ (1,2)(3,4), (1,3)(2,4) ] ),(1,2,4,3)),
RightCoset(Group( [ (1,2)(3,4), (1,3)(2,4) ] ),(2,3,4)),
RightCoset(Group( [ (1,2)(3,4), (1,3)(2,4) ] ),(1,3,4)),
RightCoset(Group( [ (1,2)(3,4), (1,3)(2,4) ] ),(1,2,3,4)) ]

gap> hom:=NaturalHomomorphism(f);
MappingByFunction( Sym( [ 1 .. 4 ] ), <group of size 6 with
2 generators>, function( x ) ... end )

3.19 Finding Symmetries

This section is more about setting up symmetry groups than anything which could be done in class.
Finding the symmetries of a given object in general is hard, in part because of the potential

difficulty of representing symmetries. If the object is geometric in a linear space, one can usually
represent symmetries by matrices. For this, it is necessary to define a basis and to determine the
images of the basis vectors under symmetries.

A more generic method, that in principle works for any “finite” object is to label parts of the
object (e.g. faces or corners of a cube, vertices and edges of a graph or a geometry) numbers.
Sometimes it is possible to just write down permutations for some symmetries and check the order
of the group generated by them – the order might indicate that all symmetries were obtained. For
example, if we take a cube, its faces labelled as for standard dice, one could label the faces from
1 to 6. Rotation around face 1 yields (2, 3, 5, 4), rotation around the face 2 yields (1, 3, 6, 4). The
group generated by these two elements has order 24 and therefore is the group of all rotations.

gap> H:=Group((2,3,5,4),(1,3,6,4));;
gap> Size(H);
24
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Otherwise one can represent relations amongst the objects (which need to be fixed by the
symmetries) as sets, typically of cardinality 2.

In the example of a cube, one could take the “neighboring” relation which would give subsets
(sets so we don’t need to consider {1, 2} and {2, 1} separately)

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}

Alternatively, and shorter, one could indicate the “not neighbor” relation

{1, 6}, {2, 5}, {3, 4}

Now consider the symmetric group G = Sn on all numbers. (Respectively, if the numbers represent
two distinct classes of objects, the direct product Sa × Sb with the points 1, . . . , a representing the
one class of objects and a+ 1, . . . , b the other class.)

Let ϕ : G→ S(n2)
the homomorphism reflecting the action of G on all 2-sets. Then the relation

becomes a subset A of
{

1, . . . ,
(n

2

)}
. Let T be the stabilizer of this set in Gϕ, then the pre-image

of T under ϕ is a subgroup of G containing all symmetries, and – if the relations were restrictive
enough – actually the group of all symmetries.

In the cube example, we would take all 2-subsets of {1, . . . , 6} and act on them with S6:

gap> sets:=Combinations([1..6],2);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ], [ 2, 3 ], [ 2, 4 ],

[ 2, 5 ], [ 2, 6 ], [ 3, 4 ], [ 3, 5 ], [ 3, 6 ], [ 4, 5 ], [ 4, 6 ],
[ 5, 6 ] ]

gap> G:=SymmetricGroup(6);
Sym( [ 1 .. 6 ] )
gap> phi:=ActionHomomorphism(G,sets,OnSets);
<action homomorphism>
gap> img:=Image(phi,G);
Group([ (1,6,10,13,15,5)(2,7,11,14,4,9)(3,8,12), (2,6)(3,7)(4,8)(5,9) ])

The sets given by the “not neighbor” relation are in positions 5, 8, and 10, these positions correspond
to the permutation action gven by phi , so we can compute T as set stabilizer. (This is using that
GAP has a special algorithm for set stabilizers in permutation groups.)

gap> Position(sets,[1,6]);
5
gap> Position(sets,[2,5]);
8
gap> Position(sets,[3,4]);
10
gap> T:=Stabilizer(img,[5,8,10],OnSets);
Group([ (1,9)(2,12)(3,14)(4,15), (1,15)(2,14)(3,12)(4,9)(6,13)(7,11),

(1,15)(2,12)(3,14)(4,9)(6,11)(7,13), (1,14)(2,15)(3,9)(4,12)(6,13)(8,10),
(1,13,2,15,6,14)(3,4,11,12,9,7)(5,8,10) ])

gap> H:=PreImage(phi,T);
Group([ (1,6), (1,6)(2,5)(3,4), (1,6)(2,5), (1,6)(2,4)(3,5), (1,5,3,6,2,4) ])
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The resulting stabilizer H ≤ G turns out to be the group of all rotational and reflectional
symmetries of a cube, acting on the faces.

If the resulting group is too large, i.e. it contains non-symmetries other relations need to be
considered. In the example this would be for obtaining only rotational symmetries, this is not yet
reflected by the neighboring relation. Instead one could either determine (in a small example) all
subgroups and check which ones contain non-symmetries, or consider further relations.

3.20 Identifying groups

One of the most frequent requests that comes up is for GAP to “identify” a given group. While
some functionality for this exists, the problem is basically what “identify” means, or what a user
expects from identification:

• For tiny orders (say up to 15), there are few groups up to isomorphism, and each of the groups
has a “natural” name. Furthermore many these names belong into series (symmetric groups,
dihedral groups, cyclic groups) and the remaining groups are in obvious ways (direct product
or possibly semidirect product) composed from groups named this way.

• This clean situation breaks down quickly once the order increases: for example there are –
up to isomorphism – 14 groups of order 16, 231 of order 96 and over 10 million of order 512.
This rapid growth goes beyond any general “naming” or “composition” scheme.

• A decomposition as semidirect, subdirect or central product is not uniquely defined without
some further information, which can be rather extensive to write down.

• Even if one might hope that a particular group would be composable in a nice way, this
does not lead to an “obvious” description, for example the same group of order 16 could be
described for example as D8 o C2, or as Q8 o C2, or as (C2 × C4) o C2 (and – vice versa –
the last name could be given to 4 nonisomorphic groups). In the context of matrix groups in
characteristic 2, S3 is better called SL2(2), and so on.

• There are libraries of different classes of groups (e.g. small order up to isomorphism, or
transitive subgroup of Sn (for small n) up to conjugacy); these libraries typically allow to
identify a given group, but the identification is just like the library call number of a book and
gives little information about the group, it is mainly of use to allow recreation of the group
with the identification number given as only information.

With these caveats, the following functions exist to identify groups and give them a name:

StructureDescription returns a string describing the isomorphism type of a group G . This string
is produced recursively, trying to decompose groups as direct or semidirect products. The resulting
string does not identify isomorphism types, nor is it neccessarily the most “natural” description of
a group.

gap> g:=Group((1,2,3),(2,3,4));;
gap> StructureDescription(g);
"A4"
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Group Libraries GAP contains extensive libraries of “small” groups and many of these libraries
allow identificatuion of a group therein. The associated library group then often comes with a name
that might be appropriate.

Small Groups The small groups library contains – amongst others – all groups of order ≤ 1000,
except 512. For such a group IdGroup returns a list [sz,num] such that the group is isomor-
phic to SmallGroup(sz,num ).

gap> g:=Group((1,2,3),(2,3,4));;
gap> IdGroup(g);
[ 12, 3 ]
gap> SmallGroup(12,3);
<pc group of size 12 with 3 generators>

Transitive Groups The transitive groups library contains transitive subgroups of Sn of degree
≤ 31 up to Sn conjugacy. For such a group of degree n, TransitiveIdentification returns
a number num , such that the group is conjugate in Sn to TransitiveGroup(n,num ).

gap> g:=Group((1,2,3),(2,3,4));;
gap> TransitiveIdentification(g);
4
gap> TransitiveGroup(NrMovedPoints(g),4);
A4

Primitive Groups The primitive groups library contains primitive subgroups of Sn (i.e. the group
is transitive and affords no nontrivial G-invariant partition of the points) of degree ≤ 1000 up
to Sn conjugacy. For such a group of degree n, PrimitiveIdentification returns a number
num , such that the group is conjugate in Sn to PrimitiveGroup(n,num ).

gap> g:=Group((1,2,3),(2,3,4));;
gap> IsPrimitive(g,[1..4]);
true
gap> PrimitiveIdentification(g);
1
gap> PrimitiveGroup(NrMovedPoints(g),1);
A(4)

Simple groups and Composition Series The one class of groups for which it is unambiguous,
and comparatively easy to assign names to is finite simple groups (assuming the classification of
finite simple groups). A consequence of the classification is that the order of a simple group deter-
mines its isomorphism type, with the exception of two infinite series (which can be distinguished
easily otherwise) [Cam81].

In GAP, this is achieved by the command IsomorphismTypeInfoFiniteSimpleGroup: For a
finite simple group, it returns a record, containing information about the groups structure, as well
as some name.
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gap> g:=SL(3,5);
SL(3,5)
gap> IsomorphismTypeInfoFiniteSimpleGroup(g/Centre(g));
rec( name := "A(2,5) = L(3,5) ", series := "L", parameter := [ 3, 5 ] )

Clearly, this can be applied to the composition series of a finite group, identifying the isomor-
phism types of all composition factors. (Of course, this information does not identify the isomor-
phism type of the group, and – in particular for solvable groups – can be rather uninformative.)
In get, the command DisplayCompositionSeries will print information about the composition
factors of a finite group.

gap> DisplayCompositionSeries(SymmetricGroup(4));
G (4 gens, size 24)
| Z(2)
S (3 gens, size 12)
| Z(3)
S (2 gens, size 4)
| Z(2)
S (1 gens, size 2)
| Z(2)
1 (0 gens, size 1)
gap> DisplayCompositionSeries(SymmetricGroup(5));
G (2 gens, size 120)
| Z(2)
S (3 gens, size 60)
| A(5) ~ A(1,4) = L(2,4) ~ B(1,4)
| = O(3,4) ~ C(1,4) = S(2,4) ~ 2A(1,4) = U(2,4) ~ A(1,5) = L(2,5) ~ B(1,5)
| = O(3,5) ~ C(1,5) = S(2,5) ~ 2A(1,5) = U(2,5)
1 (0 gens, size 1)
gap> DisplayCompositionSeries(GU(6,2));
G (size 82771476480)
| Z(3)
S (4 gens, size 27590492160)
| 2A(5,2) = U(6,2)
S (1 gens, size 3)
| Z(3)
1 (size 1)

3.21 Pc groups

Pc groups (for “polycyclic” or “power/commutator”) are essentially finitely presented solvable
groups with a particular presentation that affords an efficient normal form. For a definition see [LNS84].

There is basically no need to create such groups in an undergraduate course. Because arithmetic
for such groups is very efficient and because many problems for these groups have in general good
algorithmic solutions, GAP likes to create such groups, and they might pop up once in a while.
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3.22 Special functions for the book by Gallian

The supplement [RG02] to the abstract algebra textbook of Gallian defines several functions that
are used in exercises. Equivalent (often more efficient) versions of these functions are provided with
names starting with Gallian:
GallianUlist(n ) returns a list of the elements of Z∗n:

gap> GallianUlist(20);
[ ZmodnZObj( 1, 20 ), ZmodnZObj( 3, 20 ), ZmodnZObj( 7, 20 ),
ZmodnZObj( 9, 20 ), ZmodnZObj( 11, 20 ), ZmodnZObj( 13, 20 ),
ZmodnZObj( 17, 20 ), ZmodnZObj( 19, 20 ) ]

GallianCyclic(n,a ) returns the elements of the cyclic subgroup 〈a〉 ≤ Z∗n.

gap> GallianCyclic(15,7);
[ ZmodnZObj( 7, 15 ) ]
[ ZmodnZObj( 1, 15 ), ZmodnZObj( 4, 15 ), ZmodnZObj( 7, 15 ),
ZmodnZObj( 13, 15 ) ]

GallianOrderFrequency(G ) prints a list of element orders and their frequencies in the group G:

gap> g:=SymmetricGroup(10);
Sym( [ 1 .. 10 ] )
gap> GallianOrderFrequency(g);
[Order of element, Number of that order]=
[ [ 1, 1 ], [ 2, 9495 ], [ 3, 31040 ], [ 4, 209160 ], [ 5, 78624 ],
[ 6, 584640 ], [ 7, 86400 ], [ 8, 453600 ], [ 9, 403200 ], [ 10, 514080 ],
[ 12, 403200 ], [ 14, 259200 ], [ 15, 120960 ], [ 20, 181440 ],
[ 21, 172800 ], [ 30, 120960 ] ]

GallianCstruc(G,s ) takes a permutation groupG and a cycle structure s, as given by CycleStructurePerm
(e.g. [1, , 2] means one 2-cycle and two 4-cycles), and returns all elements of G of this cycle structure:

gap> GallianCstruc(SymmetricGroup(10),[1,,2]);;
[ (1,2)(3,4,5,6)(7,8,9,10), (1,2)(3,4,5,6)(7,8,10,9), (1,2)(3,4,5,6)(7,9,10,8),
(1,2)(3,4,5,6)(7,9,8,10), (1,2)(3,4,5,6)(7,10,9,8), (1,2)(3,4,5,6)(7,10,8,9),
(1,2)(3,4,5,7)(6,8,9,10), (1,2)(3,4,5,7)(6,8,10,9), (1,2)(3,4,5,7)(6,9,10,8),

[...]

AllAutomorphisms(G ) and GallianAutoDn(G ) return a list of all automorphisms of the group G.

gap> GallianAutoDn(DihedralGroup(IsPermGroup,6));
[ IdentityMapping( Group([ (1,2,3), (2,3) ]) ),
Pcgs([ (2,3), (1,2,3) ]) -> [ (2,3), (1,3,2) ],
[ (2,3), (1,2,3) ] -> [ (1,2), (1,3,2) ],
Pcgs([ (2,3), (1,2,3) ]) -> [ (1,2), (1,2,3) ],
[ (2,3), (1,2,3) ] -> [ (1,3), (1,2,3) ],
[ (2,3), (1,2,3) ] -> [ (1,3), (1,3,2) ] ]
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AllHomomorphisms(G,H ) returns a list of all homomorphisms from G to H. (Such a list can be
very long!)

gap> g:=DihedralGroup(IsPermGroup,6);;
gap> h:=SymmetricGroup(4);;
gap> a:=AllHomomorphisms(h,g);
[ [ (1,4,2), (1,2,3,4) ] -> [ (), () ],
[ (1,4,2), (1,2,3,4) ] -> [ (), (1,2) ],
[ (1,4,2), (1,2,3,4) ] -> [ (), (2,3) ],
[ (1,4,2), (1,2,3,4) ] -> [ (), (1,3) ],
[ (1,4,2), (1,2,3,4) ] -> [ (1,2,3), (1,2) ],
[ (1,4,2), (1,2,3,4) ] -> [ (1,2,3), (2,3) ],
[ (1,4,2), (1,2,3,4) ] -> [ (1,3,2), (1,3) ],
[ (1,4,2), (1,2,3,4) ] -> [ (1,2,3), (1,3) ],
[ (1,4,2), (1,2,3,4) ] -> [ (1,3,2), (2,3) ],
[ (1,4,2), (1,2,3,4) ] -> [ (1,3,2), (1,2) ] ]

gap> Length(a);
10

AllEndomorphisms(G ) and GallianEndoDn(G ) simply cover the special case of G = H.

gap> a:=AllEndomorphisms(g);
[ [ (2,3), (1,2,3) ] -> [ (), () ], [ (2,3), (1,2,3) ] -> [ (1,2), () ],
[ (2,3), (1,2,3) ] -> [ (2,3), () ], [ (2,3), (1,2,3) ] -> [ (1,3), () ],
[ (2,3), (1,2,3) ] -> [ (2,3), (1,2,3) ],
[ (2,3), (1,2,3) ] -> [ (1,3), (1,2,3) ],
[ (2,3), (1,2,3) ] -> [ (2,3), (1,3,2) ],
[ (2,3), (1,2,3) ] -> [ (1,2), (1,2,3) ],
[ (2,3), (1,2,3) ] -> [ (1,2), (1,3,2) ],
[ (2,3), (1,2,3) ] -> [ (1,3), (1,3,2) ] ]

3.23 Handouts

Permutations

A permutation of degree n is a function from {1, . . . , n} to itself, which is onto and one-to-one. We

can describe permutations by prescribing the image for every point, for example
(

1 2 3 4 5 6
5 3 6 4 1 2

)
.

In practice, however, we will write permutations in cycle notation, i.e. (1, 5)(2, 3, 6) for this permu-
tation. In cycle notation each point occurs at most once. The image of a point a is

b if the occurrence of a is in a cycle (. . . , a, b, . . .)

c if the occurrence of a is in a cycle (c, . . . , a) (i.e. a is at the end of a cycle)

a if a does not occur (as the cycle (a) is not written.

91



To write a permutation p =
(

1 2 . . . n
p1 p2 . . . pn

)
(i.e. p maps i to pi) in cycle form use the following

procedure:
While there are points not processed

Let a be a point that is not processed.
Write (a
Let i := pa (i.e. the image of a under p).
While i 6= a

Write , i
Let i = pi

end while
Write ).
If the cycle just completed has length 1, delete it.

end while
For example, for the permutation given above, we start by picking a = 1 and obtain i = p1 = 5.

We write (1,, As 1 6= 5 we continue as (1, 5 and get i = p5 = 1. This closes the cycle and we have
written (1, 5). Next we pick a = 2, writing (1, 5)(2. Then i = p2 = 3 and we write (1, 5)(2, 3. Next
i = p3 = 6 and write (1, 5)(2, 3, 6. As i = p6 = 2 we close the cycle to (1, 5)(2, 3, 6). Finally we pick
a = 4. As i = p4 = 4 the cycle gets closed immediately: (1, 5)(2, 3, 6)(4) and – having length one –
deleted, giving the result (1, 5)(2, 3, 6).

It is common to pick a always as small as possible, resulting in cycles starting with their smallest
elements each, though it is possible to write cycles differently, e.g. (1, 5)(2, 3, 6) = (5, 1)(3, 6, 2).

Important Observation: different cycles of a permutation never share points!

Arithmetic in cycle notation As the image of a point under a permutation is its successor
in the cycle, the image under the inverse is the predecessor. We can thus invert a permutation by
simply reverting all of its cycles (possibly rotating each cycle afterwards to move the smallest point
first): (1, 5)(2, 3, 6)−1 = (5, 1)(6, 3, 2) = (1, 5)(2, 6, 3), (1, 2, 3, 4, 5)−1 = (5, 4, 3, 2, 1) = (1, 5, 4, 3, 2).

To multiply permutations, trace through the images of points, and build a new permutation
from the images, as when translating into cycle structure. For example, suppose we want to multiply
(1, 5)(2, 3, 6) · (1, 6, 4)(3, 5). The image of 1 is 5 under the first, and the image of 5 is 3 under the
second permutation. Tus the result will start (1, 3 . . .. 3 maps to 6 and 6 to 4, thus (1, 3, 4 . . .. 4 is
fixed first and then maps to 1. So the first cycle of the result is (1, 3, 4). We pick a next point 2. 2
is mapped to 3 and 3 to 5, so we have (1, 3, 4)(2, 5 . . .. 5 is mapped to 1 and 1 to 6 and (as there
are no points left) we are done: (1, 5)(2, 3, 6) · (1, 6, 4)(3, 5) = (1, 3, 4)(2, 5, 6).

Permutations in GAP In GAP we can write permutations in cycle form and multiply (or invert
them). The multiplication order is the same as used in class (again, remember that the book uses
a reversed order):

gap> (1,2,3)*(2,3);
(1,3)
gap> (2,3)*(1,2,3);
(1,2)
gap> a:=(1,2,3,4)(6,5,7);
(1,2,3,4)(5,7,6)
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gap> a^2;
(1,3)(2,4)(5,6,7)
gap> a^-1;
(1,4,3,2)(5,6,7)
gap> b:=(1,3,5,7)(2,6,8);
(1,3,5,7)(2,6,8)
gap> a*b;
(1,6,7,8,2,5)(3,4)
gap> a*b*a^-1;
(1,7,8)(2,6,5,4)

Groups generated by elements

We have seen so far two ways of specifying subgroups: By listing explicitly all elements, or by
specifying a defining property of the elements. In some cases neither variant is satisfactory to
specify certain subgroups, and it is preferrable to specify a subgroup by generating elements.

Definition: Let G be a group and a1, a2, . . . , an ∈ G. The set

〈a1, a2, . . . , an〉 =

{
bε11 · b

ε2
2 · · · · · b

εk
k | k ∈ N0 = {0, 1, 2, 3, , . . .}, bi ∈ {a1, . . . , an}, εi ∈ {1,−1}

}

(with the convention that for k = 0 the product over the empty list is e) is called the subgroup of
G generated by a1, . . . , an.

Note: If G is finite, we can – similarly to the subgroup test – forget about inverses in the expo-
nents.

Example: Let G = S4 and a1 = (1, 2)(3, 4), a2 = (1, 4)(2, 3). Then

〈a1, a2〉 = {(), a1, a2, a1 · a1 = (), a1 · a2 = (1, 3)(2, 4), a2 · a−1
1 = (1, 3)(2, 4), a1 · a2 · a1 = a2, . . .}

(Careful: In this particular case a1 · a2 = a2 · a1, though S4 is not abelian.) We find that regardless
how long we form products, we never get elements other than (), a1, a2, a1 · a2. Similarly, it is not
hard to see that S4 = 〈(1, 2), (1, 2, 3, 4)〉

Note: If you had already linear algebra you know this idea of “generation” in the form of spanning
sets and bases. While the concept for groups is very similar, it is not possible to translate the
concept of “dimension”: Different (even “independent”) generating sets for a subgroup in general
will contain a different number of generators.

We now want to show that 〈a1, a2, . . . , an〉 is always a subgroup:

Theorem: Let G be a group and a1, a2, . . . , an ∈ G. Then H := 〈a1, a2, . . . , an〉 ≤ G.
Proof: For k = 0 we get the identity, thus e ∈ H and thus H 6= ∅. Now use the criterion for
subgroups:
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Let x, y ∈ H. Then (by the definition of H) there exist k, l ∈ N0 and elements bi, cj ∈ {a1, . . . , an},
εi, δj ∈ {±1} such that:

x = bε11 · b
ε2
2 · · · · · b

εk
k , y = cδ11 · c

δ2
2 · · · · · c

δl
l .

Note that y−1 = c
−δl
l · c−δl−1

l−1 · · · · · c−δ11 . Thus

x · y−1 = bε11 · b
ε2
2 · · · · · b

εk
k · c

−δl
l · c−δl−1

l−1 · · · · · c−δ11 ,

which has the form of an element of H. Thus H is a subgroup.

Note: If S ≤ G is a subgroup with a1, . . . , an ∈ S, then certainly all those products must be
elements of S (as S is closed under multiplication). Thus 〈a1, a2, . . . , an〉 is the smallest subgroup
of G containing all the elements a1, a2, . . . , an.

Special Case: A special case is that of only one generator, i.e. of cyclic subgroups. Then we have
in the definition that 〈a〉 = {bε11 ·b

ε2
2 · · · · ·b

εk
k } with bi ∈ {a}. We can now use the rules for exponents

and write everything as a single power of a. Thus we get:

〈a〉 = {ax | x ∈ Z} = {a0, a1, a−1, a2, a−2, a3, a−3, . . .}

is the set of all powers of a which agrees with the definition from the book.

How to calculate elements In some circumstances, it can be desirable to obtain an element
list from generators. Since the operation in a group is associative, we have that

bε11 · b
ε2
2 · · · · · b

εk
k = (bε11 · b

ε2
2 · · · · · b

εk−1

k−1 ) · bεkk .

We can therefore obtain the elements by the following process in an recursive way:

Starting with the identity, multiply all elements “so far” with all generators (and their
inverses) until nothing new is obtained.

The following description of the algorithm is more formal:

1. Write down a “start” mark.

2. Write down the identity e (all products of length 0).

3. Mark the (current) end of the list with an “end” mark. Let x run through all elements in this list
between the “start” and “end” mark.

4. Let y run through all the generators a1, · · · an.

5. Form the products x · y and x · y−1. If the result is not yet in the list, add it at the end.

6. If you have run through all x, y, and you find that you added new elements to the end of the list (after
the “end” mark), make the “end” mark the “start” mark and go back to step 3.

7. Otherwise you have found all elements in the group.

If the group is finite at some point longer products must give the same result as shorter products (which
have been computed before), thus the process will terminate.
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Example: Let G = U(48) = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47} and a1 = 5,
a2 = 11. We calculate that a−1

1 = 29, a−1
2 = 35.

We start by writing down the identity (S and E are start and end mark respectively):

S, 1, E

Now we form the products of all written down elements with a1, a2, a−1
1 and a−1

2 :

1 · 5 = 5, 1 · 11 = 11, 1 · 29 = 29, 1 · 35 = 35,

So our list now is 1, S, 5, 11, 29, 35, E. Again (back to step 3) we run through all elements written
down so far, and form products:

5 · 5 = 25, 5 · 11 = 7, 5 · 29 = 1, 5 · 35 = 31, 11 · 5 = 7, 11 · 11 = 25, 11 · 29 = 31, 11 · 35 = 1,
29 · 5 = 1, 29 · 11 = 31, 29 · 29 = 25, 29 · 35 = 7, 35 · 5 = 31, 35 · 11 = 1, 35 · 29 = 7, 35 · 35 = 25

The underlined entries are not new and thus did not get added again. Our new list therefore is
1, 5, 11, 29, 35, S, 25, 7, 31, E. Again we form products:

25 · 5 = 29, 25 · 11 = 35, 25 · 29 = 5, 25 · 35 = 11, 7 · 5 = 35, 7 · 11 = 29, 7 · 29 = 11, 7 · 35 = 5,
31 · 5 = 11, 31 · 11 = 5, 31 · 29 = 35, 31 · 35 = 29

Now no new elements were found. Thus we got all elements of the subgroup, and we have 〈5, 11〉 =
{1, 5, 7, 11, 25, 29, 31, 35}. (The ordering of elements now is unimportant, as we list the subgroup as
a set.)

Expression as words If we are giving a group by generators this means that each of its elements
can be written – not necessarily uniquely – as a product of generators (and inverses). The process
of enumerating all elements in fact gives such an expression. For example we trace back that
31 = 5 · 11−1.

For larger groups this of course can become very tedious, but it is a method that can easily be
performed on a computer.

Example: (GAP calculation) Consider the permutation group generated by (1, 2, 3, 4, 5) and
(1, 2)(3, 4):

gap> a1:=(1,2,3,4,5);
(1,2,3,4,5)
gap> a2:=(1,2)(3,4);
(1,2)(3,4)
gap> G:=Group(a1,a2);
Group([ (1,2,3,4,5), (1,2)(3,4) ])
gap> Elements(G);
[ (), (3,4,5), (3,5,4), (2,3)(4,5), (2,3,4), (2,3,5), (2,4,3), (2,4,5),
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(2,4)(3,5), (2,5,3), (2,5,4), (2,5)(3,4), (1,2)(4,5), (1,2)(3,4),
(1,2)(3,5), (1,2,3), (1,2,3,4,5), (1,2,3,5,4), (1,2,4,5,3), (1,2,4),
(1,2,4,3,5), (1,2,5,4,3), (1,2,5), (1,2,5,3,4), (1,3,2), (1,3,4,5,2),
(1,3,5,4,2), (1,3)(4,5), (1,3,4), (1,3,5), (1,3)(2,4), (1,3,2,4,5),
(1,3,5,2,4), (1,3)(2,5), (1,3,2,5,4), (1,3,4,2,5), (1,4,5,3,2), (1,4,2),
(1,4,3,5,2), (1,4,3), (1,4,5), (1,4)(3,5), (1,4,5,2,3), (1,4)(2,3),
(1,4,2,3,5), (1,4,2,5,3), (1,4,3,2,5), (1,4)(2,5), (1,5,4,3,2), (1,5,2),
(1,5,3,4,2), (1,5,3), (1,5,4), (1,5)(3,4), (1,5,4,2,3), (1,5)(2,3),
(1,5,2,3,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,4) ]

gap> Length(Elements(G));
60
gap> Order(G);
60

If we wanted to express an element of the group as a word in the generators, we could use the
command Factorization. (This command in fact internally enumerates all elements and stores
word expressions for each. the word returned therefore is as short as possible. The functionality
however is limited by the available memory – if we cannot store all group elements it will fail.)

For example for the same group as before we express a (random) element and check that the
result is the same:

gap> Factorization(G,(1,5)(3,4));
x1^-2*x2*x1^2
gap> a1^-2*a2*a1^2;
(1,5)(3,4)

Application: Sort the sequence E,D,B,C,A by performing only swaps of adjacent elements:
Considering the positions, we want to perform the permutation (1, 5)(2, 4, 3). The swaps of adjacent
elements are the permutations a1 = (1, 2), a2 = (2, 3), a3 = (3, 4), a4 = (4, 5). Using GAP, we
calculate:

gap> a1:=(1,2);
(1,2)
gap> a2:=(2,3);
(2,3)
gap> a3:=(3,4);
(3,4)
gap> a4:=(4,5);
(4,5)
gap> G:=Group(a1,a2,a3,a4);
Group([ (1,2), (2,3), (3,4), (4,5) ])
gap> Factorization(G,(1,5)(2,4,3));
x1*x2*x1*x3*x2*x4*x3*x2*x1

This means swap positions (in this order) 1/2, 2/3, 1/2, 3/4, 2/3, 4/5, 3/4, 2/3. 1/2 and you get
the right arrangement (try it out!)
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Puzzles Many puzzles can be described in this way: Each state of the puzzle corresponds to a
permutation, the task of solving the puzzle then corresponds to expressing the permutation as a
product of generators. Example 7 on p.107 in the book is an example of this.

The 2 × 2 × 2 Rubik’s Cube in GAP As an example of a more involved puzzle consider the
2× 2× 2 Rubik’s cube. We label the facelets of the cube in the following way:

21

43

109

1211

2221

2423

65

87

1413

1615

1817

2019

top

left right back

bottom

front

We now assume that we will fix the bottom right corner (i.e. the corner labelled with 16/19/24) in
space – this is to make up for rotations of the whole cube in space. We therefore need to consider
only three rotations, front, top and left. The coresponding permutations are (for clockwise rotation
when looking at the face):

gap> top:=(1,2,4,3)(5,17,13,9)(6,18,14,10);;
gap> left:=(1,9,21,20)(5,6,8,7)(3,11,23,18);;
gap> front:=(3,13,22,8)(4,15,21,6)(9,10,12,11);;
gap> cube:=Group(top,left,front);
Group([(1,2,4,3)(5,17,13,9)(6,18,14,10),(1,9,21,20)(3,11,23,18)(5,6,8,7),
(3,13,22,8)(4,15,21,6)(9,10,12,11) ])

gap> Order(cube);
3674160

By defining a suitable mapping first (for the time being consider this command as a black box) we
can choose nicer names – T, L and F – for the generators:

gap> map:=EpimorphismFromFreeGroup(cube:names:=["T","L","F"]);
[ T, L, F ] -> [ (1,2,4,3)(5,17,13,9)(6,18,14,10),
(1,9,21,20)(3,11,23,18)(5,6,8,7), (3,13,22,8)(4,15,21,6)(9,10,12,11) ]

We now can use the command Factorization to express permutations in the group as word in
generators. The reverse sequence of the inverse operations therefore will turn the cube back to its
original shape. For example, suppose the cube has been mixed up in the following way:
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621

2013

2310

1814

52

2412

48

1722

97

161

113

1519

This corresponds to the permutation

gap> move:=(1,15,20,4,6,2,21)(3,17,8,5,22,7,13)(9,14,11,18,12,23,10)

(1 has gone in the position where 15 was, 2 has gone in the position of 21, and so on.) We express
this permutation as word in the generators:

gap> Factorization(cube,move);
T*F*L*T*F*T

We can thus bring the cube back to its original position by turning each counterclockwise top,front,top,left,front,top.

Larger puzzles If we want to do something similar for larger puzzles, for example the 3× 3× 3
cube, the algorithm used by Factorization runs out of memory. Instead we would need to use a
different algorithm, which can be selected by using the map we used for defining the name. The
algorithm used then does not guarantee any longer a shortest word, in our example:

gap> PreImagesRepresentative(map,move);
T*L^-2*T^-1*L*T*L^-2*T^-2*F*T*F^-1*L^-1*F*T^-1*F^-1*L*T*L*
T^-2*F*T*F^-1*T*F*T^-1*F^-2*L^-1*F^2*L

(Note that the code uses some randomization, your mileage may vary.)

Solving Rubik’s Cube by hand

In this note, we want to determine a strategy for solving the
2× 2× 2 Rubik’s cube by hand. (Again, similar approaches
work for other puzzles, this one is just small enough to be
feasible in class.)
Remember that we label the faces of the cube as shown and
fix the piece (16/19/24) in space. The group of symmetries
then is

G = 〈 top = (1, 2, 4, 3)(5, 17, 13, 9)(6, 18, 14, 10),
left = (1, 9, 21, 20)(5, 6, 8, 7)(3, 11, 23, 18),
front = (3, 13, 22, 8)(4, 15, 21, 6)(9, 10, 12, 11) 〉

21

43

109

1211

2221

2423

65

87

1413

1615

1817

2019

top

left right back

bottom

front

98



The basic idea now is to place pieces in the right position (e.g. in “layers” of the cube), and
then continue with movements that leave these correctly placed pieces unmoved. Moving the first
pieces is usually easy; the hard work is to find suitable elements in the stabilizer or the positions
filled so far.

We will choose the positions to be filled in a way that guarantees that many of the original
generators fix the chosen points. This will automatically make for some stabilizer generators being
represented by short words. Concretely, we will fill the positions starting in the order (23,22,21)
and then work on the top layer.

We start by computing the orbit of 23. This is done in a similar way as we would enumerate all
group elements: We calculate the image of all points processed so far under all generators, until no
new images arise. We also keep track of group elements which map 23 to the possible images.

It is possible to do these slightly tedious calculations with GAP. The following set of commands will
calculate the orbit and keep track of words that yield the same image. (We work with words, as they are
easier to read than images.)

map:=EpimorphismFromFreeGroup(cube:names:=["T","L","F"]);
gens:=GeneratorsOfGroup(cube);
letters:=GeneratorsOfGroup(Source(map)); # corresponding letters
orb:=[23]; # the orbit being built
words:=[One(letters[1])]; # words that produce the right images
for x in orb do
for i in [1..Length(gens)] do
img:=x^gens[i];
if not img in orb then
Add(orb,img);
p:=Position(orb,x);
Add(words,words[p]*letters[i]);

fi;
od;

od;

As a result we get the following orbit and representatives:

Orbit 23 18 14 3 10 1 11 13 6 12 2
Rep e L LT L2 LT 2 L2T L3 L2F LT 3 LT 2F L2T 2

Orbit 9 22 8 4 5 21 7 15 17 20
Rep L2TL L2F 2 LT 3L LT 3F L2TLT L2TL2 LT 3L2 LT 3F 2 L2TLT 2 L2TL3

The crucial idea for stabilizer elements (apart from the obvious ones, such as top rotation here)
now is the following: Suppose that the image of an orbit element x under a generator g gives an old
orbit element y. Then Repx · g ·Rep−1

y moves the starting element (here 23) to itself and therefore
lies in the stabilizer. (One can show2, that all of these elements generate the stabilizer.)

In our example, we find that 23T = 23, so e · T · e−1 = T must lie in the stabilizer. Similarly
11F = 9, so L3 · F · (L2TL) lies in the stabilizer, and so on.

2This is called Schreier’s lemma, see for example Holt: Handbook of Computational Group Theory
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By computing group orders we find that we just need a few elements for generation, namely

C1 := StabG(23) =
〈
T, F, L−1TL

〉
(It is worth noticing that the construction process tends to produce elements of the form ABA−1.
If you consult any printed solution strategy, this kind of shape indeed abounds.) As far as solving
the cube is concerned, it is very easy to get a few initial positions right. Therefore we don’t aim for
a systematic strategy yet, but keep the stabilizer generators for the next level.

The next position we work with is 22, similarly as above (again, there is a nontrivial calculation
involved in showing that these three elements suffice, if one takes just a few random elements there
is no a-priori guarantee that they would do) we get

C2 := StabG(22, 23) =
〈
T, L−1TL, FTF−1

〉
Next (this is completing the bottom layer), we stabilize 21. This is where
the stabilizer becomes interesting, as far as continuing to solve the puzzle
is concerned. A repeated application gets

C3 := StabG(21, 22, 23) =
〈
T, LT−1L−1T−1F−1LF

〉
The second generator here is chosen amongst many other possibilities
as being of shortest possible length. Its action on the cube is the per-
mutation (1, 17, 5, 14, 18, 2)(4, 10, 13), i.e. two pieces are swapped (and
turned) and one piece is turned. If we only consider the positions (but
not rotations) of the top four pieces, it is not hard to see (homework)
that together with the top rotation this will let us place every piece
in its right position up to rotation. (This means, we are stabilizing the
sets {1, 5, 18}, {2, 14, 17}, {3, 6, 9} and {4, 10, 13} — formally we are
considering a different group action here, namely one on the cubies.)
What is left now is to orient the top 4 pieces suitably. By looking through
stabilizer generators we find the element L−1FL−1FT−1L−1T 2F 2LT
with the permutation (3, 6, 9)(4, 13, 10). It rotates the top two front cu-
bies in opposite directions. Clearly similar movements are possible to
the top cubies on the other sides, by rotating the whole cube in space.
By applying these moves for front, left and back, we can determine the
placement of three of the top cubies arbitrarily.

(1,17,5,14,18,2)(4,10,13)

(3,6,9)(4,13,10)

We now claim that this will actually solve the cube completely. We know that [G : C1] =
|orbG(23)| = 24−3 = 21 (on the whole cube, the piece in position 23 can be moved in all positions,
short of the three fixed ones). Similarly, when stabilizing position 23, we can (this can be easily
checked by trying out the moves permitted in C1) move the piece in position 22 to all places, but
the 3 fixed ones (16/19/24) and the three that share a cubie with 23 (7/20/23), so [C1 : C2] = 18.
By a similar argument [C2 : C3] = 15.

Under the stabilizer C3 we have seen that we can correctly place the four cubies in all possible
permutations, thus the group stabilizing the cubie positions has index 24 in C3. Using that |G| =
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3674160, we thus get that the group which only turns (but not permutes) the top cubies, and leaves
the bottom layer fixed has order

3674160
21 · 18 · 15 · 24

= 27 = 33

But this means that turning only three cubies correctly must also place the fourth cubie in the
right position.

The subgroups of S5

Using the generator notation, the Sylow theorems and a small amount of computation, we can
determine all subgroups of the symmetric group on 5 letters up to conjugacy. The possible subgroup
orders are the divisors of 120: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.

We now consider all orders and describe the possible groups. Behind each group we give the
number of (conjugate) groups of this type in square brackets.

1,120 trivial

60 must be normal (Index 2) and therefore an union of classes. There is only one such possibility,
namely A5.

2 Cyclic (1,2) [10 =
(5
2

)
] and (1,2)(3,4) [15 = (5

2)·(
3
2)

2 ]

5 Cyclic (1,2,3,4,5), Sylow subgroup, (Only this class, number is ¿1, only divisor of 120 that is
congruent 1 mod 5 is 6) [6 subgroups]

Therefore: Let S be the normalizer of a 5-Sylow subgroup: [G : S] = 6, so |S| = 20. So there
are 6 subgroups of order 20, which are the Sylow normalizers.

20 Vice versa. If |H| = 20, the number of 5-Sylow subgroups (congruence and dividing) must be
1, so the only groups of order 20 are the Sylow normalizers 〈(1, 2, 3, 4, 5), (2, 3, 5, 4)〉.

10 Ditto, a subgroup of order 10 must have a normal 5-Sylow subgroup, so they must lie in the
5-Sylow normalizers, and are normalized by these. The 5-Sylow normalizers have only one subgroup
of order 10: [6 subgroups of order 10]

15 Would have a normal 5-Sylow subgroup, but then the 5-Sylow nomalizer would have to have
an order divisible by 3, which it does not – no such subgroups.

40 Would have a normal 5-Sylow subgroup, but then the 5-Sylow nomalizer would have to have
order 40, which it does not – no such subgroups.

8 2-Sylow subgroup, all conjugate. We know that [S5 : S4] = 5 is odd, so a 2-Sylow of S4 is also
2-Sylow of S5. D8 = 〈(1, 2, 3, 4), (1, 3)〉 fits the bill. Number of conjugates: 1,3,5 or 15 (odd divisors
of 120). We know that we can choose the 4 points in 5 ways, and for each choice there are 3 different
D8’s: [15 subgroups] We therefore know that a 2-Sylow subgroup is its own normalizer.
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4 Must be conjugate to a subgroups of the 2-Sylow subgroup. Therefore the following three are
all possibilities:

Cyclic 〈(1, 2, 3, 4)〉 [15 = 5 · 3: choose the point off, then there are 3 subgroups each]

not cyclic 〈(1, 2), (3, 4)〉 [15, ditto ]

not cyclic 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 [5 copies: choose the point off]

3 Cyclic 〈(1, 2, 3)〉 [
(5
3

)
= 10 subgroups as (1,2,3) and (1,3,2) lie in the same group] Also Sylow,

thus the 3-Sylow normalizer must have index 10, order 12.

6 A group of order 6 must have a normal 3-Sylow subgroup, and therefore lie in a 3-Sylow
normalizer, which is (conjugate to) 〈(1, 2, 3), (1, 2), (4, 5)〉. We can find 3×2 = 〈(1, 2, 3)(4, 5)〉 (cyclic)
[
(5
3

)
= 10 groups], S3 = 〈(1, 2, 3), (1, 2)〉 [

(5
3

)
= 10 copies]) and 〈(1, 2, 3), (1, 2)(4, 5)〉 (isomorphic

S3) [
(5
3

)
= 10 copies].

30 Can have 1 or 10 3-Sylow subgroups. If 1, it would be in the Sylow normalizer, contradic-
tion as before. If it is 10, it contains all 3-Sylow subgroups, but 〈(1, 2, 3), (3, 4, 5)〉 has order 60,
Contradiction.

12 If it has a normal 3-Sylow subgroup, it must be amongst the 3-Sylow normalizers 〈(1, 2, 3), (1, 2), (4, 5)〉
[We know already there are 10 such groups].

If not, it contains 4 3-Sylow subgroups, i.e. 8 elements of order 3. Thart leaves space only for 3
elements of order 2, the 2-Sylow subgroup (or order 4) therefore must be normal, and its normalizer
has index at most 10, i.e. it has at most 10 conjugates. This leaves 〈(1, 2)(3, 4), (1, 3)(2, 4)〉, whose
normalizer is S4. (its normal in S4, and S4 has the right order). Inspecting S4, we find it has only
one subgroup of order 12, namely A4 = 〈(1, 2, 3), (2, 3, 4)〉 with [5, same as the number of S4’s]
conjugates.

24 We know there are [5] copies of S4, namely the point stabilizers. We now want to show that is
all: (There are 15 groups of order 24, so we can’t that easily determine the structure alone from the
order.) Its 2-Sylow subgroup must be a 2-Sylow of S5, so WLOG its 2-Sylow is D8. Now consider
the orbit of 1 under this subgroup. It must have length at least 4 (that’s under D8), but the orbit
length must divide 24. So it cannot be 5. But that means that the subgroup fixes one point and
thus is S4.

3.24 Problems

Exercise 22. Determine the elements and the multiplication table (sometimes called Cayley table)
for the group of symmetries of an equilateral triangle.

Exercise 23. Let G = 〈(1, 2, 3, 8)(4, 5, 6, 7), (1, 7, 3, 5)(2, 6, 8, 4)〉 be a permutation group generated
by two permutations.
Determine the elements of G and their orders. What is |G|?
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Exercise 24.

Consider a puzzle, as depicted on the side, which
consists of two overlapping rings filled with balls.
By moving the balls along either ring one can mix
the balls and then try to restore the original situa-
tion.
In this problem we will consider a simplified ver-
sion, that consists only of 8 balls, arranged as given
in the second picture on the right.
We will describe this state by a scheme of the form:

1 3
2

4 5
7

6 8

a) Write permutations for the rotation % around the
left circle and the rotation σ around the right circle.

Image: Egner,Püschel: Proc ISSAC 1998

5
1 2 3

76 8
4

b) Using the Factorization command (see below), give sequences of operations that will return
the following states back to the original:

4 5
1

2 8
6

3 7

,

2 1
3

4 5
7

6 8

(Check that the results you got actually work!)

Exercise 25. a) Show that one can calculate ab mod n by 2 log2(b) multiplications of numbers mod-
ulo n. (Hint: Consider b in binary form and calculate a2 mod n, a4 mod n,. . . . The GAP command
PowerMod(a,b,n) implements this.)
b) Show that n := 2307 − 1 is not prime, by finding a number a such that an mod n 6= a.

Exercise 26. The German “Enigma” encryption machine, used in the second world war, produced
(by a set of moving rotors) in each step a permutation σ ∈ S26 (Interpreting the numbers 1-26 as
letters in the alphabet.)
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a) Show that it is not always possible to use the same
setting (i.e. the same permutation σ) to encrypt and
decrypt. (This causes problems for dumb operators –
they would need to change settings between encryption
or decryption.)
b) To ease handling for the operators (who understood
little math), the German military had the “clever”
idea to add a “plug-board” (on the picture in front
of the machine) that swapped pairs of letters (this
creates a permutation π that has a cycle type as
(1, 2)(3, 4)(5, 6) · · · (25, 26)) and to feed the encryption
through the old mechanism (σ), then through the plug-
board, and in reverse back through the mechanism.
So the encryption performed now was of the form
µ = σ−1πσ.
Show that this encryption is self-reverting, i.e. that
µ2 = 1. (Thus the same setting could be used for en-
cryption and decryption.)
c) Show that µ must be the product of thirteen 2-cycles.
d) How many possibile σ exist. How many possible µ
exists? Explain, based on this count, why consequen-
tially the “clever” idea was really stupid (and indeed
was one of the reasons the code could be broken).

Source:http:
// www. math. miami. edu/ ~ harald/ enigma/

enigma. html

Exercise 27. Let G = 〈(1, 2, 3), (2, 3, 4)〉. The following GAP command determines all subgroups
of G:

s:=Union(List(ConjugacyClassesSubgroups(G),Elements));

Draw a subgroup lattice (as done in the lecture for the symmetries of a square). Which of the
subgroups are cyclic? Which ones are normal? Does G have a subgroup of order k for every k
dividing |G|?
(Useful GAP commands: IsSubset(S,T), IsCyclic(S), IsNormal(G,S).)
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Exercise 28. Let G ≤ Sn be a permutation group and Ω = {{a, b} | 1 ≤ a 6= b,≤ n} the class of
all 2-element subsets of numbers in {1, . . . , n} (i.e. the set {a, b} is considered the same as {b, a}).
We know that |Ω| =

(n
2

)
. We define an action α of G on Ω by acting on the entries:

α ({a, b}, g) := {g(a), g(b)}

a) Show that this defines a group action.
b) For G = D8 = 〈(1, 2, 3, 4), (1, 3)〉, determine the orbits of G on Ω.

Exercise 29.

A dodecahedron has 60 symmetries, namely

1 identity
A 6 · 4 = 24 rotations through face centers,
B 2 · 10 = 20 rotations around corners,
C 15 rotations around edge centers.

a) For elements of type A,B and C, determine the orbits (of the cyclic
subgroup generated by this element) on the faces.
b) Determine how many different ways (up to symmetry) exist, to color
the faces of the dodecahedron in green and gold.

A
B

B

C

Exercise 30. The following six pictures depict all faces of a mixed-up 2× 2× 2 Rubik’s cube (with
the same face labelling as the example in class):
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a) Suppose you unfold the cube to a cross-shaped diagram (as on the handout in class), give the
correct labeling of the faces.
b)Write down a permutation that describes the mixup of this cube from its original position.
c) Using GAP, determine a sequence of moves to bring the cube back to its original position.

Exercise 31. Prove or disprove:
a) U(20) and U(24) are isomorphic.
b) U(20) and D4 are isomorphic.
c) U(20) and U(15) are isomorphic.
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Linear Algebra

Linear Algebra is the basis for most concrete calculations. GAP accordingly has a strong support
of linear algebra functions. These functions exisst on two levels – a lower level of matrices and row
vectors, as well as a hiogher level of abstract vector spaces and bases (which perform all work via
coefficient vectors and the lower level functions).

The linear algebra functions work for any arbitrary field available in GAP, however no “numer-
ical” or approximate algorithms are available.

4.1 Operations for matrices

Vectors (typically considered as row vectors) in GAP are simply lists of their entries and matrices
are lists of their rows as vectors – see section 1.3.

Matrices can be added, multiplied and (if invertible) inverted using the standard arithmetic +,
* and ^-1 (respectively Inverse) operations.

Matrices returned by arithmetic operations (as well as by many functions) are immutable (i.e.
cannot be modified). To obtain a modifyable copy of such a matrix M , one can use the command
MutableCopyMat(M ).

For a matrix M , TransposedMat(M ) returns the transpose and Display(M ) pretty-prints the
matrix. Print(LaTeX(M )) prints LaTeX commands for typesetting the matrix (this is a convenience
feature when using GAP to set up matrices for typesetting, e.g. in a homework or exam).

gap> M:=[[1,2,3],[4,5,6],[7,8,9]];
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
gap> TransposedMat(M);
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
gap> Display(last);
[ [ 1, 4, 7 ],
[ 2, 5, 8 ],
[ 3, 6, 9 ] ]

gap> Print(LaTeX(M));
\left(\begin{array}{rrr}%
1&2&3\\%
4&5&6\\%
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7&8&9\\%
\end{array}\right)%

Rank(M ) determines the rank of a matrix and NullspaceMat(M ) a list of basis vectors of the
row nullspace (i.e. those vectors x such that x · M = 0). For a vector y in the row space of M ,
SolutionMat(M ,y ) returns one vector x such that x · M = y (and fail if no solution exists).

TriangulizedMat(M ) (synonym RREF) returns the reduced row echelon form of M . (The active
version TriangulizeMat(M ) will change M to this form.)

gap> Rank(M);
2
gap> NullspaceMat(M);
[ [ 1, -2, 1 ] ]
gap> SolutionMat(M,[1,1,1]);
[ -1/3, 1/3, 0 ]
gap> TriangulizedMat(M);
[ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]

There are no separate operations for column nullspace or column solutions, to obtain these one
needs to work with the transposed matrix.

Creating particular Matrices

NullMat(a ,b ,x ) creates an a × b matrix whose entries are 0 · x (this allows the creation of null
matrices over different fields. IdentityMat(a ,x ) does the same for the a -dimensional identity
matrix.

For a list L , DiagonalMat(L ) creates a square diagonal matrix with the specified diagonal
entries.

gap> NullMat(5,3,1);
[ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
gap> NullMat(5,3,Z(2));
<a 5x3 matrix over GF2>
gap> IdentityMat(4,9);
[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]
gap> IdentityMat(4,Z(3));
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],

[ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> DiagonalMat([1,2,3]);
[ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]
gap> DiagonalMat([Z(5),Z(5^2)]);
[ [ Z(5), 0*Z(5) ], [ 0*Z(5), Z(5^2) ] ]

RandomMat(a ,b ,ring ) creates a random a × b matrix with entries in ring . If ring is an
integral domain, RandomInvertibleMat(a ,ring ) creates a random matrix over ring whose de-
terminant is nonzero (but not necessarily a unit in ring ).

RandomUnimodularMat(n ) creates an n × n matrix with integer entries whose determinant is
±1.

108



gap> RandomMat(5,3,GF(3));
[ [ Z(3)^0, Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3)^0 ],
[ 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), 0*Z(3), Z(3) ] ]

gap> RandomInvertibleMat(3,Integers);
[ [ -3, -1, -3 ], [ 0, -1, 3 ], [ 0, 1, 5 ] ]
gap> Inverse(last);
[ [ -1/3, 1/12, -1/4 ], [ 0, -5/8, 3/8 ], [ 0, 1/8, 1/8 ] ]

Note (there is no reasonable equidistributive random function over the integers) that random
integers are chosen with a normal distribution in the range −10..10 and random rationals are
quotients of these.

RandomUnimodularMat can be very convenient for setting up matrices with bespoke properties
for homework or exams. from a Jordan canonical form: Chosing the base change matrix to be uni-
modular guarantees that there are no complicated denominators arising. The following commands,
for example construct a non-diagonalizable matrix for eigenvalues 1 and 2.

gap> J:=DiagonalMat([1,1,2,2]);
[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 2, 0 ], [ 0, 0, 0, 2 ] ]
gap> J[3][4]:=1; # create Jordan block
1
gap> Display(J);
[ [ 1, 0, 0, 0 ],
[ 0, 1, 0, 0 ],
[ 0, 0, 2, 1 ],
[ 0, 0, 0, 2 ] ]

gap> MM:=J^RandomUnimodularMat(4);
[ [ -13, 0, -5, -3 ], [ 0, 1, 0, 0 ], [ -41, 0, -11, -8 ], [ 138, 0, 44, 29
] ]
gap> Print(LaTeX(MM));
\left(\begin{array}{rrrr}%
-13&0&-5&-3\\%
0&1&0&0\\%
-41&0&-11&-8\\%
138&0&44&29\\%
\end{array}\right)%

CompanionMat(pol ) creates the companion matrix for the polynomial pol with the coefficients
of pol in the last column.

gap> x:=X(Rationals,"x");;
gap> CompanionMat(x^4+x+1);
[ [ 0, 0, 0, -1 ], [ 1, 0, 0, -1 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ] ]

Eigenvector theory

Again, eigenvectors in GAP are row eigenvectors.
CharacteristicPolynomial(M ) returns the characteristic polynomial of M , MinimalPolynomial(M )

the minimal polynomial. These are ordinary GAP polynomials which can be factored with Factors.
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Eigenvalues(field M ) returns the eigenvalues of M over field . Eigenvectors(field M ) re-
turns a list of a maximal linear independent set of eigenvectors.

gap> CharacteristicPolynomial(MM);
x^4-6*x^3+13*x^2-12*x+4
gap> Factors(last);
[ x-2, x-2, x-1, x-1 ]
gap> MinimalPolynomial(MM);
x^3-5*x^2+8*x-4
gap> Eigenvalues(Rationals,MM);
[ 2, 1 ]
gap> Eigenvectors(Rationals,MM);
[ [ 1, 0, 3, 1 ], [ 1, 0, 1/2, 1/4 ], [ 0, 1, 0, 0 ] ]
gap> Eigenvalues(Rationals,M);
[ 0 ]
# to get all eigenvalues we will need the root of 33
gap> Collected(Factors(Discriminant(CharacteristicPolynomial(M))));
[ [ 2, 2 ], [ 3, 7 ], [ 11, 1 ] ]
gap> Eigenvalues(CF(33),M);
[ 0, (15+3*Sqrt(33))/2, (15-3*Sqrt(33))/2 ]
gap> Eigenvectors(CF(33),M);
[ [ 1, -2, 1 ], [ 1, (9+Sqrt(33))/12, (3+Sqrt(33))/6 ],
[ 1, (9-Sqrt(33))/12, (3-Sqrt(33))/6 ] ]

Normal Forms

Amongst the normal forms of matrices that are typically considered in an abstract algebra course,
the Smith Normal Form, or Elementary Divisors Normal Form form is probably the most funda-
mental. By using only ring operations, it transforms a matrix into diagonal form with subsequent
diagonal entries dividing each other. It can be used to solve linear systems over the integers, deter-
mine the structure of an abelian group, and is the key to most other normal forms of matrices.

While this normal form is defined for any PID, the lack of a general GCD algorithm restricts
this in practice to euclidean rings.

For an matrix M , defined over an Euclidean ring R , ElementaryDivisorsMat(R ,M ) determines
the diagonal entries of the Smith Normal Form of M . ElementaryDivisorsMat(M ) tries to choose
a suitable ring, depending on the entries of M .

In many concrete applications it is necessary to also obtaind transforming matrices. This is
done by ElementaryDivisorsTransformationsMat(R ,M ). It returns a record with components
.rowtrans and .coltrans that give the matrices that will transform M to the normal form. (The
record may – as in the example – contain further components.)

gap> ElementaryDivisorsMat(M);
[ 1, 3, 0 ]
gap> r:=ElementaryDivisorsTransformationsMat(M);
rec( rowtrans := [ [ 1, 0, 0 ], [ 4, -1, 0 ], [ 1, -2, 1 ] ],
coltrans := [ [ 1, -2, 1 ], [ 0, 1, -2 ], [ 0, 0, 1 ] ],
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normal := [ [ 1, 0, 0 ], [ 0, 3, 0 ], [ 0, 0, 0 ] ], rank := 2, signdet :=
0,
rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
rowQ := [ [ 1, 0, 0 ], [ 4, -1, 0 ], [ 1, -2, 1 ] ],
colC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
colQ := [ [ 1, -2, 1 ], [ 0, 1, -2 ], [ 0, 0, 1 ] ] )

gap> r.rowtrans*M*r.coltrans=r.normal;
true

While these functions work for arbitrary euclidean rings (for example also for matrices with
polynomial entries), the implementation for the special case of the integers is far mor sophisticated,
while the general case only implements a basic version.

gap> charmat:=x^0*MM-MM^0*x;
[ [ -x-13, 0, -5, -3 ], [ 0, -x+1, 0, 0 ], [ -41, 0, -x-11, -8 ],
[ 138, 0, 44, -x+29 ] ]

gap> r:=ElementaryDivisorsTransformationsMat(charmat);
rec(
coltrans := [ [ 0, -5/37, 20/9, 5*x-13 ], [ 0, -1/37*x-25/37, 4/9*x-11/9,

x^2-4*x+4 ], [ -1/5, 1/37*x+13/37, -4/9*x+59/9, -x^2+16*x-37 ],
[ 0, 0, -185/9, -44*x+118 ] ],

normal := [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, x-1, 0 ],
[ 0, 0, 0, x^3-5*x^2+8*x-4 ] ],

rowtrans := [ [ 1, 0, 0, 0 ], [ -1/5*x-11/5, 1, 1, 0 ],
[ 44/185*x^2+366/185*x+66/37, -44/37*x+118/37, -44/37*x+118/37, 1 ],
[ -1/9*x^3-7/9*x^2+1/3*x+11/3, 5/9*x^2-20/9*x+20/9,

5/9*x^2-20/9*x+29/9, -4/9*x+11/9 ] ] )
gap> DiagonalOfMat(r.normal);
[ 1, 1, x-1, x^3-5*x^2+8*x-4 ]
gap> r.rowtrans*charmat*r.coltrans;
[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, x-1, 0 ],
[ 0, 0, 0, x^3-5*x^2+8*x-4 ] ]

gap> Inverse(r.rowtrans);
[ [ 1, 0, 0, 0 ], [ 0, 1/37*x^2+24/37*x-25/37, -4/9*x+11/9, -1 ],
[ 1/5*x+11/5, -1/37*x^2-24/37*x+62/37, 4/9*x-11/9, 1 ],
[ -44/5, 44/37*x-118/37, 1, 0 ] ]

As they typically require the ability to take square roots (and for complete factorization of the
minimal polynomial), GAP does not provide a QR decomposition or Singular Values.

4.2 Problems

Exercise 32. a) Let

A :=

 60 −60 48 −232
−9 9 −6 36
−21 21 −18 80
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Determine the Smith Normal Form of A as well as transforming matrices P and Q.
b) Let b := (−76, 15, 23)T . Determine all integer solutions to the system Ax = b.
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Fields and Galois Theory

Rationals, Cyclotomic fields and finite fields already have been described in previous sections. This
chapter is about Field extensions and particular functions for Galois theory over the rationals.

5.1 Field Extensions

For a field F and an irreducible polynomial f with coefficients in F , the command AlgebraicExtension(F ,f )
(short: AlgebraicExtension(f ) if the field is unambiguous), constructs F [x]/(f ) as a field exten-
sion of F . if the field is unambiguous), constructs K = F [x]/(f ) as a field extension of F . Whiele
GAP tries to embed F into K for purposes of mixed arithmetic, elements of K differ from elements
of F and will for example be printed differently (and will not compare as equal to elements of F ):
Elements of K that are in the natural image of F are printed by the representative in F , preceded
by an exclamation mark. Other elements are printed as a polynomial in a, where a represents a
root of f . This root can be obtained from K as RootOfDefiningPolynomial(K).

gap> e:=AlgebraicExtension(Rationals,pol);
<algebraic extension over the Rationals of degree 5>
gap> a:=RootOfDefiningPolynomial(e);
a
gap> a^5;
!7
gap> (3*a+4)^3;
27*a^3+108*a^2+144*a+64
gap> (3*a+4)^17;
242646788160000*a^4+345206482560000*a^3+478557123373125*a^2+706130877097500*a
+1109261977360000

To create polynomials over these extensions, it is necessary to create a new indeterminate. Using
Value with the new indeterminate is the easiest way to embed polynomials over the extension.
Polynomial factorization over the extensions is possible, but can quickly get expensive if the degree
gets higher.

gap> y:=X(e,"y");
y
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gap> epol:=Value(pol,y); # embed
y^5+(!-7)
gap> Factors(epol);
[ y+(-a), y^4+a*y^3+a^2*y^2+a^3*y+a^4 ]

If the polynomial defines a normal extension, it will split into linear factors and the Galois group
consists simply of those maps that map the primitive root a to any of the other roots.

gap> pol:=x^8+3*x^4+1;
x^8+3*x^4+1
gap> e:=AlgebraicExtension(Rationals,pol);
<algebraic extension over the Rationals of degree 8>
gap> y:=X(e,"y");
y
gap> epol:=Value(pol,y); # embed
y^8+!3*y^4+!1
gap> RootsOfUPol(e,epol);
[ -a^7-2*a^3, -a^7-3*a^3, -a, -a^5-2*a, a^7+2*a^3, a^7+3*a^3, a, a^5+2*a ]

Polynomials for iterated extensions

At the moment it is not possible to form iterated algebraic extensions. the following process however
can be used to construct polynomials for larger extensions. (The theory behind this is explained
in [WR76].) Some description of this process is given in exercise 36.

Suppose that f is an irreducible polynomial over F and E = F (a) the extension of F obtained by
adjoining one root a of f . Let g ∈ E[y] be an irreducible polynomial. We now consider g̃ ∈ F [x, y] by
replacing all occurrences of a in g by x. Then the resultant r := resx(f(x), (̃g(x, y)) is a polynomial
over F that has a root of g as root. If r is squarefree, it will define a larger extension. If not
squarefreeness can be acchieved, by replacing g with a new polynomial h such that h(y) = g(y+b·a)
for a suitable integer b.

gap> pol:=x^5-7;;e:=AlgebraicExtension(Rationals,pol);;y:=X(e,"y");;
<algebraic extension over the Rationals of degree 5>
gap> a:=RootOfDefiningPolynomial(e);;epol:=Value(pol,y);; # embed
gap> g:=epol/(y-a);
y^4+a*y^3+a^2*y^2+a^3*y+a^4
gap> Factors(g);
[ y^4+a*y^3+a^2*y^2+a^3*y+a^4 ]
gap> z:=X(Rationals,"z"); # since ‘y’ is already used
z
gap> gpol:=z^4+x*z^3+x^2*z^2+x^3*z+x^4;
x^4+x^3*z+x^2*z^2+x*z^3+z^4
gap> r:=Resultant(pol,gpol,x);
z^20-28*z^15+294*z^10-1372*z^5+2401
gap> Gcd(r,Derivative(r));
z^15-21*z^10+147*z^5-343
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So the resultant was not squarefree. We replace y by y − 2a and try again

gap> h:=Value(g,y-2*a);
y^4+(-7*a)*y^3+19*a^2*y^2+(-23*a^3)*y+11*a^4
gap> hpol:=z^4+(-7*x)*z^3+(19*x^2)*z^2+(-23*x^3)*z+11*x^4;
11*x^4-23*x^3*z+19*x^2*z^2-7*x*z^3+z^4
gap> r:=Resultant(pol,hpol,x);
z^20+546*z^15+482356*z^10+18083646*z^5+386683451
gap> Gcd(r,Derivative(r));
1

Thus r now is a polynomial which defines an extension in which x5 − 7 has (at least) two roots –
in fact it is the splitting field. Alas typically such calculations will end up very quickly with messy
coefficients.

gap> e:=AlgebraicExtension(Rationals,r);
<algebraic extension over the Rationals of degree 20>
gap> a:=RootOfDefiningPolynomial(e);
a
gap> y:=X(e,"y");
y
gap> epol:=Value(pol,y); # embed
y^5+(!-7)
gap> Factors(epol);
[ y+(9/116963000*a^16+97/2387000*a^11+85483/2387000*a^6+271197/341000*a),
y+(-1/18865000*a^16-81/2695000*a^11-9987/385000*a^6-56283/55000*a),
y+(1/29240750*a^16+36/2088625*a^11+4768/298375*a^6-31433/85250*a),
y+(3/292407500*a^16+139/20886250*a^11+36451/5967500*a^6+183141/213125*a),
y+(-1/14620375*a^16-72/2088625*a^11-9536/298375*a^6-11192/42625*a) ]

We can now factor r to obtain from its roots the images of a under the elements of the Galois
group. (In this particular example, working by hand and with 5

√
7 and ζ7 would be easier, the merit

of this approach is that it works in general.)

gap> roots:=RootsOfUPol(e,epol);
gap> rootpols:= # express as polynomials in x
[ -9/116963000*x^16-97/2387000*x^11-85483/2387000*x^6-271197/341000*x,
1/18865000*x^16+81/2695000*x^11+9987/385000*x^6+56283/55000*x,
-1/29240750*x^16-36/2088625*x^11-4768/298375*x^6+31433/85250*x,
-3/292407500*x^16-139/20886250*x^11-36451/5967500*x^6-183141/213125*x,
1/14620375*x^16+72/2088625*x^11+9536/298375*x^6+11192/42625*x ];

gap> List(rootpols,z->Value(z,a))=roots; # just check
true
gap> aimgs:=RootsOfUPol(e,Value(r,y)); # this takes very long
[ -23/292407500*a^16-859/20886250*a^11-32453/852500*a^6-25976/213125*a,
-1/5316500*a^16-823/8354500*a^11-1901/21700*a^6-208331/170500*a, a,
111/584815000*a^16+8271/83545000*a^11+153211/1705000*a^6+2640133/1705000*a,
-1/11696300*a^16-391/8354500*a^11-47339/1193500*a^6-226429/170500*a,
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-57/584815000*a^16-4507/83545000*a^11-573219/11935000*a^6-4286241/1705000*a,
-59/584815000*a^16-389/7595000*a^11-545233/11935000*a^6-87927/155000*a,
3/41772500*a^16+1791/41772500*a^11+214237/5967500*a^6+2059103/852500*a,
19/584815000*a^16+1399/83545000*a^11+23399/1705000*a^6-1185483/1705000*a,
37/292407500*a^16+1301/20886250*a^11+344989/5967500*a^6-71221/213125*a,
-4/73101875*a^16-29/949375*a^11-84131/2983750*a^6-52309/38750*a,
-17/116963000*a^16-251/3341800*a^11-161771/2387000*a^6-19733/341000*a,
3/29240750*a^16+108/2088625*a^11+14304/298375*a^6+76201/85250*a,
51/292407500*a^16+3951/41772500*a^11+500317/5967500*a^6+1968613/852500*a,
1/16709000*a^16+43/1519000*a^11+67093/2387000*a^6-67/248*a,
-12/73101875*a^16-3673/41772500*a^11-231933/2983750*a^6-2088549/852500*a,
17/584815000*a^16+1627/83545000*a^11+27397/1705000*a^6+2133561/1705000*a,
-9/584815000*a^16-369/83545000*a^11-71843/11935000*a^6+3002093/1705000*a,
1/10443125*a^16+29/542500*a^11+136573/2983750*a^6+92019/77500*a,
1/20886250*a^16+221/10443125*a^11+58909/2983750*a^6-310322/213125*a ]

Lets pick, for example the 7th root image and see what the corresponding automorphism does
to the roots of the original polynomial pol :

gap> img:=aimgs[7];
-59/584815000*a^16-389/7595000*a^11-545233/11935000*a^6-87927/155000*a
gap> Value(r,img); # indeed a root of the polynomial defining the field
!0
gap> List(rootpols,z->Position(roots,Value(z,img)));
[ 4, 3, 1, 5, 2 ]

So the automorphism of e , defined by mapping a to img will permute the roots of pol as indicated.
We can can to the same for all possible images and thus represent the Galois group by permutations
and use this to establish its structure as the Frobenius group of order 20.

gap> perms:=List(aimgs,
> im->PermList(List(rootpols,z->Position(roots,Value(z,im)))));
[ (1,2)(4,5), (1,2,5,3), (), (1,3,5,2), (1,3)(2,4), (1,3,4,5), (1,4,5,2,3),
(2,4,5,3), (2,5)(3,4), (2,3,5,4), (1,5,3,4,2), (1,4,2,5), (1,4)(3,5),
(1,4,3,2), (1,2,4,3,5), (1,5,4,3), (1,5)(2,3), (1,5,2,4), (1,3,2,5,4),
(1,2,3,4) ]

gap> Length(perms);
20
gap> Size(Group(perms));
20
gap> TransitiveIdentification(Group(perms));
3
gap> TransitiveGroup(5,3);
F(5) = 5:4
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5.2 Galois groups over the rationals

If f ∈ Q[x] is an irreducible polynomial, we can consider the splitting field K of f as a Galoios
extension over Q. A typical problem in Galois theory is to determine the Galois group G of such
an extension, however the difficulty of hand arithmetic, and in particular of representing automor-
phisms, makes it hard to consider extensions that are not cyclotomic or with a dihedral Galois
group. One fundamental issue is already that to represent automorphisms of an extension, it is
necessary to represent the extension K/Q. If [K : Q] is several hundered (something which is easily
acchieved already for degree 8), this becomes infeasible.

A way around this problem is to consider the Galois group more abstractly: Every Galois
automorphism will permute the roots of f . If f is of degree n, this yields a homomorphism ϕ : G→
Sn. The kernel of ϕ is trivial (automorphisms that fix all roots, fix all of K) and the image Gϕ is a
transitive group of degree n (if G acted intransitively on the roots, the roots in one orbit would yield
a factor of f). In other words, as long as we do not aim to apply the homomorphism (the methods
below will identify Gϕ without constructing ϕ), we can consider G as a transitive subgroup of Sn.

The first approach uses a theorem of Dedekind and Frobenius (a nice proof, completely suitable
for an advance undergraduate course, can be found in van der Waerden’s book [vdW71]), that
states that – for a prime p not dividing any denominators and such that f mod p is squarefree – the
Galois group H of f mod p over Fp can be considered as a subgroup of Gϕ. However H is cyclic and
its cycle shape (as a permutation in Sn) is given simply by the degrees of the irreducible factors of
f mod p.

The theorem of Chebotarëv [SL96] (whose proof is far beyond any undergraduate course)
strengthens this to the result that in the limit over all primes, every element of G arises in subgroups
H with the same frequency.

By factororing f modulo a set of primes, one thus can get some idea of the structure of G. In
particular, we can identify the case that Gϕ = Sn since this is implied by the existence of certain
cycle shapes (See [DSar]). Handout 5.3 gives some examples of such a process.)

An automated implementation of this process (for values of n ≤ 30) is implemented by the
function ProbabilityShapes(f ). It returns a list of index numbers (as transitive groups of the
appropriate degree) of the most likely candidates for the Galois group of the splitting field of f .
In the following example, the splitting field has (most likely) degree 8 (i.e. the group acts regularly
on the roots) and Galois group isomorphic to the dihedral group of order 8.

gap> pol:=x^8+3*x^4+1;
x^8+3*x^4+1
gap> Factors(pol);
[ x^8+3*x^4+1 ]
gap> ProbabilityShapes(pol);
[ 4 ]
gap> TransitiveGroup(8,4);
D_8(8)=[4]2

A perfect (nonprobabilistic) identification – albeit at potentially very long runtime in larger
examples – is accheived by GaloisType(f ) which returns not a list but just the number of the
actual Galois group type.
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gap> GaloisType(pol);
4

In either case what is identified is the Sn-class of the image Gϕ, no identification of the roots
takes place.

5.3 Handouts

Identification of a Galois group by Cycle Shapes

We create a polynomial and find that it is squarefee modulo all primes > 7.

gap> x:=X(Rationals,"x");;f:=x^8-16*x^4-98;;
gap> Set(Factors(Discriminant(f)));
[ -2, 2, 3, 7 ]
gap> l:=Filtered([8..1000],IsPrimeInt);;Length(l);
164

Lets consider the first such prime, 11. We reduce f modulo 11 and find that it is the product of
two factors of degree 4.

gap> p:=l[1];
11
gap> UnivariatePolynomial(GF(p),CoefficientsOfUnivariatePolynomial(f)
> *One(GF(p)),1);
x_1^8+Z(11)^9*x_1^4+Z(11)^0
gap> fmod:=UnivariatePolynomial(GF(p),CoefficientsOfUnivariatePolynomial(f)
> *One(GF(p)),1);
x_1^8+Z(11)^9*x_1^4+Z(11)^0
gap> List(Factors(fmod),Degree);
[ 4, 4 ]

The ‘Collected’ command transforms such a list into a nicer form: 2 factors of degree 4. We start a
list in which we collect this information and do the same calculation in a loop over all other primes.

gap> shape:=Collected(List(Factors(fmod),Degree));
[ [ 4, 2 ] ]
gap> a:=[];;
gap> Add(a,shape);

gap> for i in [2..Length(l)] do
> p:=l[i];
> fmod:=UnivariatePolynomial(GF(p),CoefficientsOfUnivariatePolynomial(f)
> *One(GF(p)),1);
> shape:=Collected(List(Factors(fmod),Degree)); Add(a,shape);
> od;
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We now collect the information over all primes, considering (inverse) frequencies out of the 164
primes in [7, 1000]. For example 1/3 of all primes gave a factorization into 2 linear factors and 3
quadratic, 1/54 of all primes into a product of 8 linear factors.

gap> Collected(a);
[ [[[1,2],[2,3]],42], [[[1,4],[2,2]],9], [[[1,8]],3],
[[[2,4]],23],[[[4,2]],45], [[[8,1]],42] ]

gap>List(Collected(a),i->[i[1],Int(164/i[2])]);
[ [[[1,2],[2,3]],3], [[[1,4],[2,2]],18], [[[1,8]],54],[[[2,4]],7],
[[[4,2]],3], [[[8,1]],3] ]

We now want to compare this information to the cycle shape distribution in a permutation group.
For this we use an existing classification of transitive subgroups of Sn up to conjugacy. (Such

lists have been computed up to degree 35 at the time of writing.)
Consider for example the 10-th group in the list of transitive subgroups degree 8. We collect the

cycle structures of all elements and again count frequency information: 1/16 of all elements have
only 1-cycles, 1/2 have two 4-cycles, 1/8 has two 2-cycles, 1/3 four 2-cycles.

gap> g:=TransitiveGroup(8,10);
[2^2]4
gap> Collected(List(Elements(g),CycleStructurePerm));
[ [ [ ], 1 ], [ [ ,, 2 ], 8 ], [ [ 2 ], 2 ], [ [ 4 ], 5 ] ]
gap> List(Collected(List(Elements(g),CycleStructurePerm)),
> i->[i[1],Int(Size(g)/i[2])]);
[ [ [ ], 16 ], [ [ ,, 2 ], 2 ], [ [ 2 ], 8 ], [ [ 4 ], 3 ] ]

This apparently does not agree with the frequencies we got. Thus do this calculation for all (50)
transitive groups of degree 8:

gap> NrTransitiveGroups(8);
50
gap> e:=[];;
gap> for i in [1..50] do
> g:=TransitiveGroup(8,i);
> freq:=List(Collected(List(Elements(g),CycleStructurePerm)),
> i->[i[1],Int(Size(g)/i[2])]);
> Add(e,freq);
> od;

We certainly are only interested in groups which contain cycle shapes as we observed. We thus
check, which groups (given by indices) contain elements that are: three 2-cycles, two 2-cycles, four
2-cycles, two 4-cycles, and one 8-cycle.

gap> sel:=[1..50];;
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[3]));
[ 6, 8, 15, 23, 26, 27, 30, 31, 35, 38, 40, 43, 44, 47, 50 ]
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[2]));
[ 15, 26, 27, 30, 31, 35, 38, 40, 44, 47, 50 ]
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gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[4]));
[ 15, 26, 27, 30, 31, 35, 38, 40, 44, 47, 50 ]
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[,,2]));
[ 15, 26, 27, 30, 31, 35, 38, 40, 44, 47, 50 ]
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[,,,,,,1]));
[ 15, 26, 27, 35, 40, 44, 47, 50 ]

8 Groups remain. All but the first contain elements of shapes we did not observe, but we can also
consider frequencies:

gap> e{sel};
[ [[[],32],[[,,,,,,1],4],[[,,2],4],[[2],16],[[3],4],[[4],6]],
[[[],64],[[,,,,,,1],4],[[,,1],16],[[,,2],5],[[2],10],
[[2,,1],16],[[3],8],[[4],4]],

[[[],64],[[,,,,,,1],4],[[,,2],3],[[1],16],[[2],10],[[2,,1],8],
[[3],16],[[4],12]],

[[[],128],[[,,,,,,1],8],[[,,1],32],[[,,2],4],[[1],32],[[1,,1],16],
[[2],12],[[2,,1],4],[[3],10],[[4],7]],

[[[],192],[[,,,,,,1],4],[[,,1],16],[[,,2],16],[[,2],6],[[1,,,,1],6],
[[2],32],[[2,,1],16],[[3],8],[[4],14]],

[[[],384],[[,,,,,,1],8],[[,,,,1],12],[[,,1],32],[[,,2],6],[[,2],12],
[[1],96],[[1,,,,1],12],[[1,,1],16],[[1,2],12],[[2],21],[[2,,1],10],
[[3],13],[[4],15]],

[[[],1152],[[,,,,,,1],8],[[,,1],96],[[,,2],10],[[,1],72],[[,1,1],12],
[[,2],18],[[1],96], [[1,,,,1],6],[[1,,1],16],[[1,1],12],[[2],27 ],
[[2,,1],6],[[2,1],24],[[3],32],[[4],34]],

[[[],40320],[[,,,,,,1],8],[[,,,,,1],7],[[,,,,1],12],[[,,,1],30],[[,,1],96],
[[,,2],32],[[,1],360],[[,1,,1],15],[[,1,1],12],[[,2],36],[[1],1440],
[[1,,,,1],12],[[1,,,1],10],[[1,,1],16],[[1,1],36],[[1,2],36],
[[2],192],[[2,,1],32],[[2,1],24],[[3],96],[[4],384]]]

Comparing with the frequencies in the group again, we find that the first group (index 15) gives
the best correspondence overall.

gap> List(Collected(a),i->[i[1],Int(164/i[2])]);
[ [[[1,2],[2,3]],3], [[[1,4],[2,2]],18], [[[1,8]],54],[[[2,4]],7],
[[[4,2]],3], [[[8,1]],3] ]

(The group has order 32, it has a structure (C2 ×D8) o C2.)

5.4 Problems

Exercise 33. The GAP list Primes contains the 168 prime numbers < 1000. Determine the degree
distributions (and their frequencies) when factoring x4 + 4x3 + 6x2 + 4x− 4 modulo these primes.
How frequently (roughly) does each degree distribution occur? (You might want to concentrate on the
frequency of primes for which the polynomial will split into linear factors.) Repeat the experiment
for x4 − 10x2 + 1 and x4 + 3x+ 1. What frequencies occur in these cases?
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Exercise 34. There are 5 classes of transitive groups of degree 4: 1 : 〈(1, 2, 3, 4)〉 ∼= C4, 2 :
〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ∼= V4, 3 : 〈(1, 2, 3, 4), (1, 3)〉 ∼= D8, 4 : 〈(1, 2, 3), (2, 3, 4)〉 ∼= A4, and 5 :
〈(1, 2, 3, 4), (1, 2)〉 ∼= S4. Using GAP, find polynomials of degree 4 that have each of these groups as
GaloisType.

Exercise 35. Determine the irreducible polynomials of degree dividing 4 over F2 and show that
their product is x16 − x.
(Hint: You can verify the result in GAP:

x:=X(GF(2),"x");
Factors(x^16-x);

Exercise 36. Let α be algebraic over F with minimal polynomial m(x) ∈ F [x] and F (α) ∼=
F [x]/ 〈m(x)〉 the corresponding algebraic extension. Suppose that g(x) ∈ F (α)[x] and that β is
a root of g(x). Consider h(x, y) ∈ F [x, y] such that g(x) = h(x, α) (i.e. we replace occurrences of
α in the coefficients of g by a new variable y). Then the resultant r(x) = resy (h(x, y),m(y)) is a
polynomial that has β as root, i.e. r(β) = 0.
(Note: r(x) is not necessarily irreducible, the minimal polynomial of β is an irreducible factor of
r.)

For example, suppose we want to construct a rational polynomial that has a root of x4 +5x+ 3
√

2
as a root. Set p(x) = x3 − 2 (minimal polynomial of 3

√
2) and h(x, y) = x4 + 5x+ y.

gap> x:=X(Rationals,"x");;y:=X(Rationals,"y");;
gap> p:=x^3-2;;
gap> h:=x^4+5*x+y;;
gap> r:=Resultant(h,Value(p,y),y); # The Value command takes p in y
-x^12-15*x^9-75*x^6-125*x^3-2
gap> Factors(r);
[ -x^12-15*x^9-75*x^6-125*x^3-2 ]

We can use this method to construct iterative extensions, in particular splitting fields. We take
an irreducible polynomial p and construct the field F (α), adjoining one root of α of p. Then we
factor p over F (α) and take an irreducible factor q(x). We replace x by x+ k · α for some integer
k (this is needed to avoid just getting a power of p again, as all roots of q are also roots of p and
thus have the same minimal polynomial. Typically k = 1 works. Proof for this later.) The resultant
then defines the field with two roots adjoined and so on.

For example, we can construct the splitting field of x3 − 2 over Q:

gap> p:=x^3-2;;
gap> e:=AlgebraicExtension(Rationals,p);
<algebraic extension over the Rationals of degree 3>
gap> a:=PrimitiveElement(e); # a is alpha
a
gap> pe:=Value(p,X(e)); # make it a polynomial over e.
x_1^3+(!-2)
gap> qs:=Factors(pe);q:=qs[2];;
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[ x_1+(-a), x_1^2+a*x_1+a^2 ]
gap> Value(q,X(e)+a); $ Note X(e) is the proper ‘‘x’’
x_1^2+3*a*x_1+3*a^2
gap> h:=x^2+3*y*x+3*y^2;
x^2+3*x*y+3*y^2
gap> r:=Resultant(h,Value(p,y),y);
x^6+108
gap> Factors(r); # As r is irreducible it now defines the double extension
[ x^6+108 ]
gap> e:=AlgebraicExtension(Rationals,r); # now verify that p splits
<algebraic extension over the Rationals of degree 6>
gap> Factors(Value(p,X(e)));
[ x_1+(1/36*a^4-1/2*a), x_1+(1/36*a^4+1/2*a), x_1+(-1/18*a^4) ]

(If p would not split here we would take again one of the factors and repeat the process.) Note that
the printed a now is a root of r, which is (from the way we modified q, replacing x by x+ 3

√
2) the

difference of two roots of p, e.g. we can assume it it be γ := 3
√

2(1− e
2πi
3 ). Indeed, we can calculate

γ6 = −108, thus it is a root of our r. Considering the irreducible factors of r calculated above,

we can also check (by tedious complex arithmetic) that
γ4

36
− γ

2
= − 3
√

2,
γ4

36
+
γ

2
= − 3
√

2e
2πi
3 , and

− 1
18
γ4 = − 3

√
2e

4πi
3 , so these are indeed the factors.

If r defines the splitting field of p and we factor r over this field Q[x]/ 〈r〉 = Q(γ), we get roots
(we’ll see later why r must split as well over this field). In the above example:

gap> s:=RootsOfUPol(Value(r,X(e)));
[ -1/12*a^4-1/2*a, -a, 1/12*a^4-1/2*a, 1/12*a^4+1/2*a, a, -1/12*a^4+1/2*a ]

We thus know the possible automorphisms of Q(γ), for example γ 7→ −γ, or γ 7→ −γ
4

12
− γ

2
.

We know (in this example) that Q(γ) = Q( 3
√

2, ζ = e
2πi
3 ) and have seen already that 3

√
2 =

−γ
4

36
+
γ

2
. By factorizing x2 + x + 1 over Q(γ), express ζ in terms of γ. Using this, describe the

images of 3
√

2 and of ζ under the automorphism γ 7→ −γ.
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6

-

Number Theory

While GAP was not designed specifically for number theory, there is sufficient basic functionality
to make the system a feasible choice for a course on Elementary Number Theory.

First and foremost is the arbitrary precision long integer arithmetic which makes it easy to work
with numbers beyond the range of a pocket calculator. There also is a primality test IsPrimeInt,
a probabilistic primality test IsProbablyPrimeInt as well as a factorization routine Factors.
The scope of these routines will not be up to par with a dedicated system or research level problems,
but it should be sufficient for even ambitious teaching applications. (Make sure that the factint
package is installed, it provides a better factorization routine using the elliptic curve algorithm as
well as the quadratic sieve.

Modulo arithmetic (as described in the chapter on rings) used the binary mod operator. However
mod only applies once to a result, i.e. 3+5 mod 4 returns 4 and (3+5) mod 4 first calculates 8
and then reduces to the result 0.

Intermediate reduction for large powers ae mod m is available using the function PowerMod(a,e,m),
which uses repeated squaring, based on the binary representation of e and reduces all intermediate
results, leading to a substantial runtime improvement.

gap> PowerMod(5,10^50,37);
7
gap> 5^(10^50); # straightforward calculation fails
Error, Integer operands: <exponent> is too large

The ChineseRem(moduli,remainders) function finds the smallest positive integer n such that
the list remaindes returns the remainders by the list moduli. (The moduli do not need to be
coprime.)

gap> moduli:=[3,5,7];
[ 3, 5, 7 ]
gap> n:=34;
34
gap> List(moduli,x->n mod x);
[ 1, 4, 6 ]
gap> ChineseRem([3,5,7],[1,4,6]);
34

123



6.1 Units modulo m

Much of elementary Number Theory is about the structure of the group (Z/mZ)∗ without actually
invoking group theory. Membership and inverses in this group can be tested using the gcd, as
already described in the chapter on rings.

The Eulerian ϕ function is available as Phi, similarly the exponent λ of the group of units (the
lcm of element orders) is obtained via Lambda. PrimeResidues(m) lists all elements coprime up
to m.

gap> PrimeResidues(11);
[ 1 .. 10 ]
gap> PrimeResidues(10);
[ 1, 3, 7, 9 ]

OrderMod(a,m) finds the multiplicative order of a modulo m, assuming that a is coprime.

gap> OrderMod(2,11);
10
gap> OrderMod(2,12);
0

IsPrimitiveRootMod(a,m) tests whether a is a primitive root modulom, and PrimitiveRootMod(m)1

finds (by exhaustive search) a primitive root.a is a primitive root modulom, and PrimitiveRootMod(m)
finds (by exhaustive search) a primitive root. (Other primitive roots can be obtained, by taking
this root to powers whose exponents are coprime to φ(n).)

gap> PrimitiveRootMod(11);
2
gap> OrderMod(2,11);
10
gap> List(PrimeResidues(Phi(11)),x->2^x mod 11);
[ 2, 8, 7, 6 ]
gap> OrderMod(8,11);
10
gap> OrderMod(7,11);
10
gap> OrderMod(6,11);
10

6.2 Legendre and Jacobi

The Legendre symbol Legendre(k,m) indicates whether k is a square modulo m, typically for a
prime m. For such elements, the command RootMod calculates a (square) root of a modulo m, it
returns fail if the element is not a square

1careful, there also is PrimitiveRoot, which is for algebraic extensions of fields
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gap> Legendre(2,11);
-1
gap> Legendre(3,11);
1
gap> RootMod(3,11);
5
gap> 5^2 mod 11;
3
gap> RootMod(2,11);
fail

A generalization of the Legendre symbol is the Jacobi symbol Jacobi(k,m) which s defined for
arbitrary values of m.

If k is a quadratic residue, the command RootMod(k,m) will find one square root, RootsMod(k,m)
will find all square roots. Both command generalize in the form RootMod(k,l,m) for l-th roots.

6.3 Cryptographic applications: RSA

Public key cryptography, in particular the RSA scheme, is a prominent application of number
theory. The following functions can make it easier to use this for encoding actual messages:
NumbersString(string ,modulus ) takes a string string and transcribes it into a sequence of
numbers, none exceeding modulus , using the encoding A = 11, B = 12 etc. (If a different encoding
is desired, it can be provided in an optional third argument as a string with each letter in the
position of its number.)

The corresponding reverse command StringNumbers(l ,modulus ) takes a list of numbers l

and returns the string.

The resulting numbers than can be processed in any kind of arithmetic encoding. For example,
suppose we want to do RSA encoding for p = 15013, q = 15511 and exponent k = 12347. Encoding
a simple number is just to calculate xk (mod m), which is done by PowerMod:

gap> p:=15013;q:=15511;
15013
15511
gap> m:=p*q;phi:=(p-1)*(q-1); # calculate modulus and (secret) phi
232866643
232836120
gap> k:=12347;Gcd(k,phi); # verify that k is valid
12347
1
gap> message:=NumbersString("THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG",m);
[ 30181510, 27311913, 21101228, 25332410, 16253410, 20312326, 15141025,
32152810, 30181510, 22113635, 10142517 ]

gap> code:=List(message,x->PowerMod(x,k,m));
[ 104886308, 132410308, 192999903, 24504423, 190694999, 158002285, 5273407,
163037499, 104886308, 95330894, 5790882 ]
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(These commands can be used, for example, to create decryption exercises)
To decrypt we need to invert k (mod φ(m)):

gap> decode:=1/k mod phi;
198420803
gap> message:=List(code,x->PowerMod(x,decode,m));
[ 30181510, 27311913, 21101228, 25332410, 16253410, 20312326, 15141025,
32152810, 30181510, 22113635, 10142517 ]

gap> StringNumbers(message,m);
"THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG"

6.4 Handouts

Factorization of n = 87463 with the Quadratic Sieve

To find a factor base consider the values of
(
n
p

)
for small primes and find when

(
n
p

)
= 1:

gap> n:=87463;;
gap> Primes{[1..12]};
[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 ]
gap> List(Primes{[1..12]},p->Jacobi(n,p));
[ 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1 ]
gap> ps:=Filtered(Primes{[1..12]},p->Jacobi(n,p)=1);
[ 2, 3, 13, 17, 19, 29 ]

We thus select the factor base 2, 3, 13, 17, 19, 29.
The aim of sieving is to find numbers x in the interval of length 2 · 35 (somewhat arbitrarily

chosen – if it does not work we would have to choose a longer interval) around b
√
nc = 295.

gap> roots:=List(ps,p->RootsMod(n,p));
[ [ 1 ], [ 1, 2 ], [ 5, 8 ], [ 7, 10 ], [ 5, 14 ], [ 12, 17 ] ]
gap> RootInt(n,2);
295

We want that x2−n splits completely in the factor base. To save on trial divisions, note (this is the
sieving step) that p

∣∣ x2 − n if and only if x is a root of n modulo p. We determine these possible
roots:

gap> roots:=List(ps,p->RootsMod(n,p));
[ [ 1 ], [ 1, 2 ], [ 5, 8 ], [ 7, 10 ], [ 5, 14 ], [ 12, 17 ] ]

These numbers build the sieving table (see table below).
The following piece of GAP code, using the global variables n and ps also can be used. Calling it

for x prints a row of the sieving table and returns false if x2−n does not factor and the exponent
vector (including a first entry for −1) otherwise.

Sieverow:=function(x)
local goodp,xn,factor,p,l;
goodp:=ps{Filtered([1..Length(ps)],a->x mod ps[a] in roots[a])};
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xn:=x^2-n;
# trial factor with the good primes
factor:=[];
for p in goodp do

while xn mod p=0 do
xn:=xn/p;
Add(factor,p);

od;
od;
if xn=1 or xn=-1 then

Print(x," ",goodp,factor,"\n");
if xn=1 then
l:=[0];

else
l:=[1];

fi;
Append(l,List(ps,p->Number(factor,a->p=a)));
return l;

else
Print(x," ",goodp,"\n");
return false;

fi;
end;

gap> Sieverow(261);
[ 2, 19 ]
false
gap> Sieverow(265);
[ 2, 3, 13, 17 ][ 2, 3, 13, 13, 17 ]
[ 1, 1, 1, 2, 1, 0, 0 ]

The sieving now is done by the following loop, which collects results in t :

gap> t:=[];;
gap> for x in [295-30..295+30] do Add(t,[x,Sieverow(x)]);od;
gap> t:=[];;
gap> for x in [295-35..295+35] do Add(t,[x,Sieverow(x)]);od;
260 [ 3 ]
261 [ 2, 19 ]
262 [ 3, 17 ]
263 [ 2, 3 ]
264 [ ]
265 [ 2, 3, 13, 17 ][ 2, 3, 13, 13, 17 ]
266 [ 3 ]
[...]
gap> t:=Filtered(t,x->x[2]<>false);
[ [ 265, [ 1, 1, 1, 2, 1, 0, 0 ] ], [ 278, [ 1, 0, 3, 1, 0, 0, 1 ] ],
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[ 296, [ 0, 0, 2, 0, 1, 0, 0 ] ], [ 299, [ 0, 1, 1, 0, 1, 1, 0 ] ],
[ 307, [ 0, 1, 2, 1, 0, 0, 1 ] ], [ 316, [ 0, 0, 6, 0, 1, 0, 0 ] ] ]

For the values of x for which x2 − n splits completely, the exponent vector modulo 2 is thus:

x −1 2 3 13 17 19 29
265 1 1 1 0 1 0 0
278 1 0 1 1 0 0 1
296 0 0 0 0 1 0 0
299 0 1 1 0 1 1 0
307 0 1 0 1 0 0 1
316 0 0 0 0 1 0 0

We form this matrix modulo 2:

gap> A:=List(t,x->x[2])*Z(2)^0;
[ [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
[ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],

[...]
gap> Display(A);
1 1 1 . 1 . .
1 . 1 1 . . 1
[...]

and now solve for vA = 0, getting a basis of the nullspace:

gap> null:=NullspaceMat(A);
[ <an immutable GF2 vector of length 6>, <an immutable GF2 vector of length 6> ]
gap> Display(null);
1 1 1 . 1 .
. . 1 . . 1

We now would have to test all vectors of the nullspace, in this example the first basis vector is
sufficient. It has entries in positions 1,2,3 and 5. The interesting x numbers thus are

gap> nums:=List(t{[1,2,3,5]},x->x[1]);
[ 265, 278, 296, 307 ]

For these numbers i we now know (from the solution of the linear system) that s =
∏
i(i

2 − n)
must be a square and form y =

√
s and x =

∏
i i. Of course we need to consider the results only

modulo n.

gap> s:=Product(nums,i->i^2-n);
182178565001316
gap> y:=RootInt(s,2);
13497354
gap> y:=RootInt(s,2) mod n;
28052
gap> x:=Product(nums) mod n;
34757
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We now just need to consider the gcds of x− y and x+ y with n in the hope to find factors, which
in this case happens to give the prime factorization:

gap> Gcd(x-y,n);
149
gap> Gcd(x+y,n);
587
gap> 149*587;
87463
gap> IsPrimeInt(149);
true
gap> IsPrimeInt(587);
true
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Sieving Table
x 2 3 13 17 19 29 x2 − n splits
261 X X
262 X X
263 X X
264
265 X X X X −2 · 3 · 132 · 17
266 X
267 X
268 X X
269 X X
270
271 X X X
272 X
273 X X
274 X
275 X X
276
277 X X
278 X X X −33 · 13 · 29
279 X X
280 X X
281 X X X
282 X
283 X X
284 X
285 X
286 X
287 X X
288
289 X X
290 X X
291 X X
292 X
293 X X
294 X
295 X X

x 2 3 13 17 19 29 x2 − n splits
296 X X 32 · 17
297 X
298 X
299 X X X X 2 · 3 · 17 · 19
300
301 X X
302 X X
303 X
304 X X
305 X X
306
307 X X X X 2 · 32 · 13 · 29
308 X
309 X X
310 X
311 X X
312
313 X X X
314 X
315 X
316 X X 36 · 17
317 X X X
318 X
319 X X
320 X X
321 X
322 X
323 X X
324
325 X X
326 X
327 X
328 X X
329 X X
330 X X

6.5 Problems

Exercise 37. Determine the number of zeroes at the end of the integer 50!. (50! = 1 ·2 ·3 ·4 · · · · ·50)

Exercise 38. Find a primitive root modulo 73. Use it to solve 6x ≡ 32 (mod 73).
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Exercise 39. Show that 1062123847 is not prime, by finding a base for which it is not a pseudo-
prime. (ie a number m such that m1062123847−1 − 1 is not divisible by 1062123847)

Exercise 40. Show that 1729 = 7 · 13 · 19 is a Carmichael number.

Exercise 41. Ernie, Bert and the Cookie Monster want to measure the length of Sesame Street.
Each of them does it his own way. Ernie relates:“I made a chalk mark at the beginning of the street
and then again every 7 feet. there were 2 feet between the last mark and the end of the street.” Bert
tells you:“Every 11 feet there are lamp posts in the street. The first is 5 foot from the beginning
and the last one is exactly at the end of the street.” Finally the Cookie Monster says: “starting at
the beginning of Sesame Street, I put down a cookie every 13 feet. I ran out of cookies 22 feet from
the end.” All three agree that the length does not exceed 1000 feet. How many feet is Sesame Street
long?

Exercise 42. Three sailors and a monkey end up on a tropical beach. They collect n coconuts for
food and decide to divide them up in the morning. In the night, the first sailor gets up, divides
the coconuts into three equal parts, whilch leaves a remainder of one, and gives the one remaining
coconut to the monkey. He takes his share, puts the remaining pile together, and leaves.
Later the secons sailor wakes up. Without noticing that the first sailor already left, he divides the
coconuts by three, gives the one remaining coconut to the monkey.
Finally the third sailor repeats the process.
Find the smallest possible (positive – the theoretical physicist P.A.M.Dirac alledgedly gave the an-
swer -2) number n of coconuts in the original pile.
( Hint: Let x, y, z be the numbers of coconuts each sailor took. Then n = 3x + 1, 2x = 3y + 1,
2y = 3z + 1. This gives a linear diophantine equation between z and n.)

Exercise 43. (from [Sil01]) In this problem we use the following translation table for letters and
numbers:

A B C D E F G H I J K L M
11 12 13 14 15 16 17 18 19 20 21 22 23
N O P Q R S T U V W X Y Z
24 25 26 27 28 29 30 31 32 33 34 35 36

a) You have been sent the following message:

5272281348 21089283929 3117723025 26844144908 22890519533
26945939925 27395704341 2253724391 1481682985 2163791130
13583590307 5838404872 12165330281 501772358 7536755222

It has been encoded using p = 187963, q = 163841, m = pq = 30796045883, e = 48611. Decode the
message.
You can find these numbers (apart from the second last) on the web page:
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http: // www. math. brown. edu/ ~ jhs/ frintdir/ FRINTExercise18. 3. html

to save you retyping.

Exercise 44. Consider the following list of fractions:

17
91
,
78
85
,
19
51
,
23
38
,
29
33
,
77
29
,
95
23
,
77
19
,

1
17
,
11
13
,
13
11
,
15
2
,
1
7
,
55
1

and let n := 2. We now perform the following process (invented by J.H.Conway):
Multiply n by the first number a in the list, for which the product n · a will be an integer and let
n := n · a. Whenever n = 2e is a power of 2, we write down the exponent e. Implement this procee-
dure in GAP and see what list of exponents is produced.

Exercise 45. Determine (without using a Legendre function) the following value of the Legendre
symbol. Then use GAP to verify:

(
3342
3343

)
Exercise 46. Show that 3 is a primitive root modulo 401 (which is prime) and determine the index
ind3(19) (ie the number that you raise 3 to to get 19 (mod 401)) using Shanks’ algorithm.

Exercise 47. Factorize 12968419 with the quadratic sieve, using the factor base 3, 5, 7, 19, 29 and
a sieving interval of length 2 · 80.

Exercise 48. Using the classification of Gaussian primes, factorize 6860 = 22 ·5 ·73 into Gaussian
primes. Compare with the result given by GAP.

Exercise 49. Suppose that n is a number that has a prime factor p, such that p − 1 is a product
of small primes.
a) Let k = 2e23e3 · · · pepkk a product of powers of the first k primes (for example let k be the LCM
of the first m numbers). Show that if p− 1

∣∣ k then gcd(ak − 1, n) ≥ p > 1 for any a coprime to n.
b) Use this approach to factor 387598193 into prime numbers, using a base a = 2 and k =
lcm{2, 3, . . . , 8}.
(This method is also due to Pollard and is called the p− 1-method. A generalization is the Elliptic
Curve Factorization Algorithm by H. Lenstra, which is the best known “all-purpose” method, if the
number has smaller prime factors.)

132

http://www.math.brown.edu/~jhs/frintdir/FRINTExercise18.3.html


7

-

Answers

Exercise 1, page 31

a) Once again we use the built-in functions DivisorsInt and Sum. We write a function very similar
to the example except instead of printing a message, we return a boolean value.

gap> IsPerfectNumber:=function(n)
local sigma;
sigma:=Sum(DivisorsInt(n));
if sigma = 2*n then

return true;
else

return false;
fi;

end;

function( n ) ... end

b) The Filtered command and the list [1..999] will be very useful here.

gap> Filtered([1..999],i->IsPerfectNumber(i));

[ 6, 28, 496 ]

Thus we see there are only three perfect numbers less than 1000: 6, 28, and 496.
c) Indeed we can see that these three numbers are of that form, namely with n = 1, 2, 4. If

n = 3 then 2n(2n+1 − 1) = 120 but since 120 did not show up on our filtered list above, it must
not be perfect. Thus not every number of that form is perfect.

d) We could begin by constructing a list of numbers of the form 2n(2n+1 − 1) as follows:

gap> OurForm:=List([1..30],n->2^n*(2^(n+1)-1));

[ 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560,
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33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296,
137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528,
140737479966720, 562949936644096, 2251799780130816, 9007199187632128,
36028796884746240, 144115187807420416, 576460751766552576,
2305843008139952128 ]

However, if we do this, we lose sight of what n is for each number of that form, short of having
to manually count through the list or ask GAP what the Position of an element is. To make things
easier, we “package” our numbers together with their corresponding n value in a two-element list.

gap> OurForm:=List([1..30],n->[n,2^n*(2^(n+1)-1)]);

[ [ 1, 6 ], [ 2, 28 ], [ 3, 120 ], [ 4, 496 ], [ 5, 2016 ], [ 6, 8128 ],
[ 7, 32640 ], [ 8, 130816 ], [ 9, 523776 ], [ 10, 2096128 ],
[ 11, 8386560 ], [ 12, 33550336 ], [ 13, 134209536 ], [ 14, 536854528 ],
[ 15, 2147450880 ], [ 16, 8589869056 ], [ 17, 34359607296 ],
[ 18, 137438691328 ], [ 19, 549755289600 ], [ 20, 2199022206976 ],
[ 21, 8796090925056 ], [ 22, 35184367894528 ], [ 23, 140737479966720 ],
[ 24, 562949936644096 ], [ 25, 2251799780130816 ], [ 26, 9007199187632128 ],
[ 27, 36028796884746240 ], [ 28, 144115187807420416 ],
[ 29, 576460751766552576 ], [ 30, 2305843008139952128 ] ]

We then ask GAP to find the perfect numbers in this list, using our function from part a).
(Notice we need to use x[2] below rather than just x since x itself is a list with two elements.)

gap> PerfectNumbersOfOurForm:=Filtered(PerfectCandidates,x->IsPerfectNumber(x[2]));

[ [ 1, 6 ], [ 2, 28 ], [ 4, 496 ], [ 6, 8128 ], [ 12, 33550336 ],
[ 16, 8589869056 ], [ 18, 137438691328 ], [ 30, 2305843008139952128 ] ]

Now that we have seen who is perfect, we look for a pattern. Looking just at the n-values of
1,2,4,6,12,16,18,30,... nothing particularly jumps out. Looking at the values themselves, 6, 28, 496,
8128,... again nothing particularly jumps out. What about the factors of our numbers? The first
factor, 2n, is unlikely to reveal anything as it is simply a power of two. So we decide to just look
at the second factor of our numbers, 2(n+ 1)− 1.

gap> SecondFactorOfPerfectNumbers:=List(PerfectNumbersOfOurForm,x->2^(x[1]+1)-1);

[ 3, 7, 31, 127, 8191, 131071, 524287, 2147483647 ]

Ah! We see that the first four are all prime. Are the rest?

gap> List(SecondFactorOfPerfectNumbers,m->IsPrime(m));

[ true, true, true, true, true, true, true, true ]

Indeed they are. We now compare with the second factors of the numbers that were not perfect.
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gap> NotPerfectNumbersOfOurForm:=Filtered(OurForm,x->not IsPerfectNumber(x[2]));

[ [ 3, 120 ], [ 5, 2016 ], [ 7, 32640 ], [ 8, 130816 ], [ 9, 523776 ],
[ 10, 2096128 ], [ 11, 8386560 ], [ 13, 134209536 ], [ 14, 536854528 ],
[ 15, 2147450880 ], [ 17, 34359607296 ], [ 19, 549755289600 ],
[ 20, 2199022206976 ], [ 21, 8796090925056 ], [ 22, 35184367894528 ],
[ 23, 140737479966720 ], [ 24, 562949936644096 ], [ 25, 2251799780130816 ],
[ 26, 9007199187632128 ], [ 27, 36028796884746240 ],
[ 28, 144115187807420416 ], [ 29, 576460751766552576 ] ]

gap> SecondFactorOfNotPerfectNumbers:=List(NotPerfectNumbersOfOurForm,x->2^(x[1]+1)-1);

[ 15, 63, 255, 511, 1023, 2047, 4095, 16383, 32767, 65535, 262143, 1048575,
2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727,
268435455, 536870911, 1073741823 ]

gap> List(SecondFactorOfNotPerfectNumbers,m->IsPrime(m));

[ false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false,
false, false ]

They are all not prime. So based on this data we can make a conjecture: 2n(2n+1−1) is perfect
if and only if 2n+1 − 1 is prime (in fact a Mersenne prime).

e) Assume 2n+1 − 1 is prime. Then the divisors of 2n(2n+1 − 1) are 1, 2, 22, 23, . . . , 2n and
2n+1 − 1, 2(2n+1 − 1), 22(2n+1 − 1), 23(2n+1 − 1), . . . , 2n(2n+1 − 1). We can sum each of these
sequences using the formula for the sum of a finite geometric series. Thus,

(1+2+22+23+. . .+2n)+(2n+1−1)(1+2+22+23+. . .+2n) = 2n+1−1+(2n+1−1)(2n+1−1) =
2n+1(2n+1 − 1)

which is exactly twice our original number.
Conversley, we can see that if 2n+1 − 1 is not prime, 2n(2n+1 − 1) will have all of the divisors

listed above and more. The same computation holds, so the sum of the divisors will be strictly
greater than twice 2n(2n+1 − 1), since the sum of a proper subset is equal to it.

Exercise 2, page 60

To compute the GCD in gap we can use the command Gcd.

gap> Gcd(67458,43521);
3

We can find the form axa + yb using the extended euclidean algorithm, either via ShowGcd, or as
the result of GcdRepresentation The command Gcdex(a,b) will return a useful list of information.

gap> GcdRepresentation(67458,43521);
[ -4829, 7485 ]
gap> ShowGcd(67458,43521);
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67458=1*43521 + 23937
43521=1*23937 + 19584
23937=1*19584 + 4353
19584=4*4353 + 2172
4353=2*2172 + 9
2172=241*9 + 3
9=3*3 + 0
The Gcd is 3
= 1*2172 -241*9
= -241*4353 + 483*2172
= 483*19584 -2173*4353
= -2173*23937 + 2656*19584
= 2656*43521 -4829*23937
= -4829*67458 + 7485*43521
3

Therefore we have −4829 ∗ 67458 + 7485 ∗ 43521 = 3 which we verify in GAP.

gap> -4829*67458+7485*43521;
3

Exercise 3, page 61

gap> x:=X(Rationals,"x":old);;
gap> f:=x^4+4*x^3-13*x^2-28*x+60;
x^4+4*x^3-13*x^2-28*x+60
gap> g:=x^6+5*x^5-x^4-29*x^3-12*x^2+36*x;
x^6+5*x^5-x^4-29*x^3-12*x^2+36*x
gap> Gcd(f,g);
x^2+x-6

If use of the Gcd command is considered to simplistic, this is how to do the Euclidean algorithm
by hand:

gap> a:=g;;b:=f;;
gap> r:= a mod b;
-20*x^3+60*x^2+200*x-480
gap> a:=b;;b:=r;;
gap> r:= a mod b;
18*x^2+18*x-108
gap> a:=b;;b:=r;;
gap> r:= a mod b;
0
gap> b; # remainder was 0, b is the result
18*x^2+18*x-108
gap> 1/18*b; # scale
x^2+x-6
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Exercise 4, page 61

a) We compute the check digit using the mod command in GAP.

gap> 10*3+9*8+8*6+7*0+6*7+5*3+4*4+3*2+2*7;

243

gap> 243 mod 11;

1

Thus the check digit is X (which represents 11-1=10).
b) By lowering the last digit by 4 and the second to last digit by 1, we lower our total by 11.

Thus we can change two digits and end up with the same check digit. This is verified by a similar
computation:

gap> 10*3+9*8+8*6+7*0+6*7+5*3+4*4+3*1+2*3;

232

gap> 243 mod 11;

1

Thus the check digit is still X.

Exercise 5, page 61

To answer this question we will write a small function called Easter, which will take as input the
year and return the date. We will use the Print command to output our result. We will also use
backslash n at the end of our print command to specify a line return.

gap> Easter:=function(n)
> local a, b, c, d, e;
> a:=n mod 19;
> b:=n mod 4;
> c:=n mod 7;
> d:=(19*a+24) mod 30;;
> e:=(2*b+4*c+6*d+5) mod 7;
> if (d+e)<10 then
> Print("Easter will fall on ", d+e+22,"th March \n");
> else
> if not (d+e-9)=26 then
> Print("Easter will fall on ", d+e-9, "th of April \n");
> else
> Print("Easter will fall on April 19th \n");
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> fi;
> fi;
> end;
function( n ) ... end
gap> Easter(2010);
Easter will fall on 4th of
April
gap> Easter(1968);
Easter will fall on 14th of April

b) We will test the years between 1900-2099 to see which ones have Easter on March 23. We begin
by modifying our code to return a value flag:=true when Easter is on March 23, otherwise it will
return false. We will also not have it print anything so we don’t have to read a print statement for
each year in our for loop.

gap> Easter:=function(n)
> local a, b, c, d, e, flag;
> flag:=false;
> a:=n mod 19;
> b:=n mod 4;
> c:=n mod 7;
> d:=(19*a+24) mod 30;;
> e:=(2*b+4*c+6*d+5) mod 7;
> if (d+e)<10 then
> if (d+e+22)=23 then
> flag:=true;
> fi;
> else
> if not (d+e-9)=26 then
> else
> fi;
> fi;
> return flag;
> end;
function( n ) ... end
gap> for i in [1900..2099] do
> if Easter(i)=true then
> Print("Easter lies on March 23 in year ", i, "\n");
> fi;
> od;
Easter lies on March 23 in year 1913
Easter lies on March 23 in year
2008

Therefore the two years where Easter is on March 23 is 1913 and 2008.
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c) We will again slightly modify our Easter code to output only a list of numbers [month,date] so
we can easily see repeats.

gap> Easter:=function(n)
> local a, b, c, d, e, List;
> List:=[];
> a:=n mod 19;
> b:=n mod 4;
> c:=n mod 7;
> d:=(19*a+24) mod 30;;
> e:=(2*b+4*c+6*d+5) mod 7;
> if (d+e)<10 then
> Add(List,[3,d+e+22]);
> else
> if not (d+e-9)=26 then
> Add(List, [4,d+e-9]);
> else
> Add(List, [4,19]);
> fi;
> fi;
> return List;
> end;
function( n ) ... end
gap> Easter(1);
[ [ 4, 9 ] ]
gap> Easter(2);
[
[ 3, 25 ] ]
gap> K:=[];
[ ]
gap> for i in [1..100] do
> Add(K,Easter(i));
> od;
gap> K;
[ [ [ 4, 9 ] ], [ [ 3, 25 ] ], [ [ 4, 14 ] ], [ [ 4, 5 ] ],
[ [ 4, 25 ] ], [ [ 4, 10 ] ], [ [ 4, 2 ] ], [ [ 4, 21 ] ],
[ [ 4, 6 ] ], [ [ 3, 29 ] ], [ [ 4, 18 ] ], [ [ 4, 9 ] ], [ [ 3, 25 ] ],
[ [ 4, 14 ] ], [ [ 4, 6 ] ], [ [ 4, 25 ] ],

[ [ 4, 10 ] ], [ [ 4, 2 ] ], [ [ 4, 15 ] ], [ [ 4, 6 ] ], [ [ 3, 29 ] ],
[ [ 4, 18 ] ], [ [ 4, 3 ] ], [ [ 4, 22 ] ],

[ [ 4, 14 ] ], [ [ 3, 30 ] ], [ [ 4, 19 ] ], [ [ 4, 10 ] ], [ [ 3, 26 ] ],
[ [ 4, 15 ] ], [ [ 4, 7 ] ], [ [ 3, 29 ] ],

[ [ 4, 11 ] ], [ [ 4, 3 ] ], [ [ 4, 23 ] ], [ [ 4, 14 ] ], [ [ 3, 30 ] ],
[ [ 4, 19 ] ], [ [ 4, 4 ] ], [ [ 3, 26 ] ],

[ [ 4, 15 ] ], [ [ 4, 7 ] ], [ [ 4, 20 ] ], [ [ 4, 11 ] ], [ [ 4, 3 ] ],
[ [ 4, 23 ] ], [ [ 4, 8 ] ], [ [ 3, 30 ] ],
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[ [ 4, 19 ] ], [ [ 4, 4 ] ], [ [ 3, 27 ] ], [ [ 4, 15 ] ], [ [ 3, 31 ] ],
[ [ 4, 20 ] ], [ [ 4, 12 ] ], [ [ 4, 3 ] ],
[ [ 4, 16 ] ], [ [ 4, 8 ] ], [ [ 3, 24 ] ], [ [ 4, 12 ] ], [ [ 4, 4 ] ],
[ [ 4, 24 ] ], [ [ 4, 9 ] ], [ [ 3, 31 ] ],

[ [ 4, 20 ] ], [ [ 4, 12 ] ], [ [ 3, 28 ] ], [ [ 4, 16 ] ], [ [ 4, 8 ] ],
[ [ 3, 24 ] ], [ [ 4, 13 ] ], [ [ 4, 4 ] ],

[ [ 4, 24 ] ], [ [ 4, 9 ] ], [ [ 4, 1 ] ], [ [ 4, 20 ] ], [ [ 4, 5 ] ],
[ [ 3, 28 ] ], [ [ 4, 17 ] ], [ [ 4, 1 ] ],

[ [ 4, 21 ] ], [ [ 4, 13 ] ], [ [ 3, 29 ] ], [ [ 4, 17 ] ], [ [ 4, 9 ] ],
[ [ 4, 1 ] ], [ [ 4, 14 ] ], [ [ 4, 5 ] ],
[ [ 3, 28 ] ], [ [ 4, 17 ] ], [ [ 4, 2 ] ], [ [ 4, 21 ] ], [ [ 4, 13 ] ],
[ [ 3, 29 ] ], [ [ 4, 18 ] ], [ [ 4, 9 ] ],
[ [ 3, 25 ] ], [ [ 4, 14 ] ], [ [ 4, 6 ] ], [ [ 4, 25 ] ] ]

We can see from this example that the amount of time it takes to repeat varies over time, however
since the smallest value in March is March 22 and the largest value in April is April 25, and we do
not repeat a date until a sequence has finished we know the longest we can go is 34 years before
we cycle again.

Exercise 6, page 61

a) If g(x) = f(x) mod p(x), g(x) = f(x) + h(x)p(x) for some polynomial h(x). Thus g(α) =
f(α) + h(α)p(α) = f(α) since p(α) = 0.

b) We compute mod p in GAP.

gap> x:=Indeterminate(Integers,"x");
x
gap> p:=x^3-6*x^2+12*x-3;
x^3-6*x^2+12*x-3
gap> (x-2)^3 mod p;
-5

Thus we see that α = 2− 51/3.

Exercise 7, page 61

a) We enter into GAP all polynomials of degree 0 or 1.

gap> x:=Indeterminate(GF(3),"x");
x
gap> zero:=Zero(GF(3)); one:=One(GF(3)); two:=2*One(GF(3));
0*Z(3)
Z(3)^0
Z(3)
gap> rems:=[zero,one,two,one*x,one*x+one,one*x+two,two*x,two*x+one,two*x+two];
0*Z(3), Z(3)^0, Z(3), x, x+Z(3)^0, x-Z(3)^0, -x, -x+Z(3)^0, -x-Z(3)^0 ]

b) We use a double List command to create the addition and multiplication tables.
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gap> f:=one*x^2-two; x^2+Z(3)^0
gap> multTable:=List(rems,p->List(rems,q->(q*p) mod f));
[[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), Z(3)^0, -Z(3)^0, x, x+Z(3)^0, x-Z(3)^0, -x, -x+Z(3)^0, -x-Z(3)^0 ],
<output truncated>
gap> additionTable:=List(rems,p->List(rems,q->q+p mod f));
[[ 0*Z(3), Z(3)^0, -Z(3)^0, x, x+Z(3)^0, x-Z(3)^0, -x, -x+Z(3)^0, -x-Z(3)^0 ],
[ Z(3)^0, -Z(3)^0, 0*Z(3), x+Z(3)^0, x-Z(3)^0, x, -x+Z(3)^0, -x-Z(3)^0, -x ],
<output truncated>

Thus the tables have the property that multTable[i][j]=rems[i]*rems[j].
c) Notice that the upper right-hand three-by-three corner of both tables only contains elements
from GF (3). Thus it is a subring.
d) By trying out all three possibilities, we see it has no roots.
e) Notice that x itself is a solution!
f) We check that every nonzero row of the matrix has an identity (Z(0) for addition, Z(1) for
multiplication) in it.

gap> Number( multTable, r -> ForAny(r,p -> p=zero*x+one));
8

Exercise 8, page 62

First we get the polynomials we will quotient by as well as alpha, the image of x.

gap> x:=Indeterminate(GF(2),"x");
x
gap> zero:=Zero(GF(2)); one:=One(GF(2));
0*Z(2)
Z(2)^0
gap> f:=one*x^3+one*x+one;
x^3+x+Z(2)^0
gap> g:=one*x^3+one*x^2+one;
x^3+x^2+Z(2)^0
gap> alpha:=one*x+one;
x+Z(2)^0

In a few examples, we check that this respects the operations of the ring.

gap> (alpha^3+alpha+one) mod g;
0*Z(2)
gap> (x^2+x+1)*x mod f;
x^2+Z(2)^0
gap> (alpha^2+one) mod g;
x^2
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gap> (alpha^2+alpha+one)*(alpha) mod g;
x^2

gap> (x^2+1)*(x+1) mod f;
x^2
gap> (alpha^2) mod g;
x^2+Z(2)^0
gap> (alpha^2+one)*(alpha+one) mod g;
x^2+Z(2)^0

gap> (x^2+1)+(x+1) mod f;
x^2+x
gap> (alpha^2+alpha) mod g;
x^2+x
gap> (alpha^2+one)+(alpha+one) mod g;
x^2+x

Exercise 9, page 62

Lets define the degree function first.

gap> d:=function(x) return x*ComplexConjugate(x);end;;
gap> d(1+E(4));
2
gap> d(1+2*E(4));
5

Now lets start the euclidean algorithm. We divide by the number of smaller degree, because
otherwise the first step will just swap the variables.

gap> a:=7+E(4);; b:=-1+5*E(4);;
gap> d(a);
50
gap> d(b);
26

gap> a/b;
-1/13-18/13*E(4)
gap> q:=-E(4);; # we choose a gaussian integer ‘‘not too far away’’,

# rounding -1/13 to 0 and -18/13 to -1.
gap> r:=a-q*b; # the reminder
2
gap> d(r); #indeed the degree went down.
4
gap> a:=b;;b:=r;; # iterate
gap> a/b;
-1/2+5/2*E(4)
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gap> q:=-1+2*E(4); # again we round the coefficients to get a gaussian integer
-1+2*E(4)
gap> r:=a-q*b;
1+E(4)
gap> d(r);
2
gap> a:=b;;b:=r;;
gap> a/b;
1-E(4)

At this point a/b is gaussian, this means q := a/b and r will be zero. The gcd therefore is teh last
nonzero remainder, 1 + i.

In fact GAP even has the appropriate division with remainder implemented, we could simply
ask for the Gcd, rendering the problem trivial.

gap> Gcd(a,b);
1+E(4)

Exercise 10, page 62

Exercise 11, page 62

gap> x:=X(Rationals,"x":old);;
gap> f:=x^5+5*x^2-1;
x^5+5*x^2-1
gap> y:=X(GF(2),"y":old);;
gap> fv:=Value(f,y);
y^5+y^2+Z(2)^0
gap> Factors(fv);
[ y^5+y^2+Z(2)^0 ]
gap> List(Factors(fv),Degree);
[ 5 ]

So the first polynomial is irreducible over Z[x].

gap> f:=x^4+4*x^3+6*x^2+4*x-4;
x^4+4*x^3+6*x^2+4*x-4
gap> y:=X(GF(2),"y":old);;
gap> fv:=Value(f,y);
y^4
gap> List(Factors(fv),Degree);
[ 1, 1, 1, 1 ]
gap> List(Factors(Value(f,X(GF(3)))),Degree);
[ 2, 2 ]
gap> List(Factors(Value(f,X(GF(5)))),Degree);
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[ 1, 1, 1, 1 ]
gap> List(Factors(Value(f,X(GF(7)))),Degree);
[ 2, 2 ]
gap> List(Factors(Value(f,X(GF(11)))),Degree);
[ 1, 1, 2 ]
gap> List(Factors(Value(f,X(GF(13)))),Degree);
[ 4 ]

gap> f:=x^7-30*x^5+10*x^2-120*x+60;;
gap> List(Factors(Value(f,X(GF(13)))),Degree);
[ 3, 4 ]
gap> List(Factors(Value(f,X(GF(19)))),Degree);
[ 2, 5 ]

The only partition of 7 which permits both [3, 4] and [2, 5] as refinement is [7], so the polynomial
is irreducible.

Exercise 12, page 62

We construct the polynomials and then use GAP to see if x is a primitive root.

gap> x:=Indeterminate(GF(2),"x");
x
gap> zero:=Zero(GF(2)); one:=One(GF(2));
0*Z(2)
gap> Z(2)^0
f:=one*x^2+one*x+one;
gap> x^2+x+Z(2)^0
Filtered([1..2^2-1],n->x^(n) mod f=one+zero*x);
[ 3 ]

This tells us that x is in fact primitive, since it had to go to the last possible power to get 1.
Similar computations show that x is a primitive root for the other two cases as well:

gap> f:=one*x^3+one*x+one;
x^3+x+Z(2)^0
gap> Filtered([1..2^3-1],n->x^(n) mod f=one+zero*x);
[ 7 ]

gap> f:=one*x^4+one*x+one;
x^3+x+Z(2)^0
gap> Filtered([1..2^4-1],n->x^(n) mod f=one+zero*x);
[ 15 ]
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Exercise 13, page 63

For part a), we simply see that the coefficient pi is the number of ways of adding two of the
exponents together to get i as their sum. There are nm total possibilities. Thus pi/(mn) is the
probability of getting a sum of i.

For part b), we run the suggested code as above and get the following output:

gap> x:=Indeterminate(Integers,"x");
x
gap> dtermable:=function(f,d)
f:=CoefficientsOfUnivariatePolynomial(f);
return ForAll(f,i->i>=0) and Sum(f)=d;

end;
function( f, d ) ... end
gap> divisors:=p->List(Combinations(Factors(p)),x->Product(x,p^0));
function( p ) ... end
gap> p:=(x+x^2+x^3+x^4+x^5+x^6)^2;;
gap> Filtered(divisors(p),i->dtermable(i,6) and Value(i,0)=0 and dtermable(p/i,6) and Value(p/i,0)=0);
[ x^8+x^6+x^5+x^4+x^3+x, x^6+x^5+x^4+x^3+x^2+x, x^4+2*x^3+2*x^2+x ]

The polynomial x6 + x5 + x4 + x3 + x2 + x is the standard die. However (x8 + x6 + x5 + x4 +
x3 +x)(x4 + 2 ∗x3 + 2 ∗x2 +x) = p gives us a new pair of dice that work: one is labelled 1,3,4,5,6,8
and one is labelled 1,2,2,3,3,4.

We now begin part c) by investigating if it is possible for two tetrahedral dice labeled 1,2,3,4.

gap> p:=(x+x^2+x^3+x^4)^2;;
gap> Filtered(divisors(p),i->dtermable(i,4) and Value(i,0)=0 and dtermable(p/i,4) and Value(p/i,0)=0);
[ x^3+2*x^2+x, x^4+x^3+x^2+x, x^5+2*x^3+x ]
gap> last[1]*last[3]=p;
true

Thus again we have a pair of Sicherman dice! This time they are labelled 1,2,2,3 and 1,3,3,5.
We now try with octahedra. Here we have enough factors that we run a Filtered command to

pluck out what pairs actually multiply to p.

gap> p:=(x+x^2+x^3+x^4+x^5+x^6+x^7+x^8)^2;;
gap> dice:=Filtered(divisors(p),i->dtermable(i,8) and Value(i,0)=0 and dtermable(p/i,8) and Value(p/i,0)=0);
[ x^5+2*x^4+2*x^3+2*x^2+x, x^7+2*x^6+x^5+x^3+2*x^2+x,
x^6+x^5+2*x^4+2*x^3+x^2+x, x^8+x^7+x^6+x^5+x^4+x^3+x^2+x,
x^10+x^9+2*x^6+2*x^5+x^2+x, x^9+2*x^7+2*x^5+2*x^3+x,
x^11+x^9+2*x^7+2*x^5+x^3+x ]

gap> Filtered(Tuples(dice,2),t->t[1]*t[2]=p);
[ [ x^5+2*x^4+2*x^3+2*x^2+x, x^11+x^9+2*x^7+2*x^5+x^3+x ],
[ x^6+x^5+2*x^4+2*x^3+x^2+x, x^10+x^9+2*x^6+2*x^5+x^2+x ],
[ x^7+2*x^6+x^5+x^3+2*x^2+x, x^9+2*x^7+2*x^5+2*x^3+x ],
[ x^8+x^7+x^6+x^5+x^4+x^3+x^2+x, x^8+x^7+x^6+x^5+x^4+x^3+x^2+x ],
[ x^9+2*x^7+2*x^5+2*x^3+x, x^7+2*x^6+x^5+x^3+2*x^2+x ],

145



[ x^10+x^9+2*x^6+2*x^5+x^2+x, x^6+x^5+2*x^4+2*x^3+x^2+x ],
[ x^11+x^9+2*x^7+2*x^5+x^3+x, x^5+2*x^4+2*x^3+2*x^2+x ] ]

Thus we see (ignoring the original pair and duplicates on the list) we have 3 pairs of Sicherman
dice for the octahedron. The first is labelled 1,2,2,3,3,4,4,5 and 1,3,5,5,7,7,9,11. The second is
labelled 1,2,3,3,4,4,5,6 and 1,2,5,5,6,6,9,10.

We repeat this process once more for the dodecahedron. We use a Sum command to make the
creation of p less tedious. Additionally, since we have a large number of matches at the end, we use
two Set commands to remove duplicates from our list.

p:=(Sum([1..12],i->x^i))^2;;
dice:=Filtered(divisors(p),i->dtermable(i,12) and Value(i,0)=0 and dtermable(p/i,12) and Value(p/i,0)=0);
[ x^9+x^8+x^7+2*x^6+2*x^5+2*x^4+x^3+x^2+x,
x^13+x^12+x^10+2*x^9+x^8+x^6+2*x^5+x^4+x^2+x,
x^7+2*x^6+2*x^5+2*x^4+2*x^3+2*x^2+x,
x^11+2*x^10+x^9+x^7+2*x^6+x^5+x^3+2*x^2+x,
x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x,
x^18+x^15+x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^5+x^4+x,
x^8+x^7+2*x^6+2*x^5+2*x^4+2*x^3+x^2+x,
x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x,
x^16+x^15+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^2+x,
x^6+2*x^5+3*x^4+3*x^3+2*x^2+x, x^10+2*x^9+2*x^8+x^7+x^4+2*x^3+2*x^2+x,
x^13+2*x^11+2*x^9+2*x^7+2*x^5+2*x^3+x,
x^17+x^15+x^13+2*x^11+2*x^9+2*x^7+x^5+x^3+x,
x^11+x^10+2*x^9+x^8+x^7+x^5+x^4+2*x^3+x^2+x,
x^15+x^14+x^13+2*x^9+2*x^8+2*x^7+x^3+x^2+x ]

Filtered(Tuples(dice,2),t->t[1]*t[2]=p);
[ [ x^6+2*x^5+3*x^4+3*x^3+2*x^2+x,

x^18+x^15+x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^5+x^4+x ],
[ x^7+2*x^6+2*x^5+2*x^4+2*x^3+2*x^2+x,

x^17+x^15+x^13+2*x^11+2*x^9+2*x^7+x^5+x^3+x ],
[ x^8+x^7+2*x^6+2*x^5+2*x^4+2*x^3+x^2+x,

x^16+x^15+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^2+x ],
[ x^9+x^8+x^7+2*x^6+2*x^5+2*x^4+x^3+x^2+x,

x^15+x^14+x^13+2*x^9+2*x^8+2*x^7+x^3+x^2+x ],
[ x^10+2*x^9+2*x^8+x^7+x^4+2*x^3+2*x^2+x,

x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x ],
[ x^11+x^10+2*x^9+x^8+x^7+x^5+x^4+2*x^3+x^2+x,

x^13+x^12+x^10+2*x^9+x^8+x^6+2*x^5+x^4+x^2+x ],
[ x^11+2*x^10+x^9+x^7+2*x^6+x^5+x^3+2*x^2+x,

x^13+2*x^11+2*x^9+2*x^7+2*x^5+2*x^3+x ],
[ x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x,

x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x ],
[ x^13+2*x^11+2*x^9+2*x^7+2*x^5+2*x^3+x,

x^11+2*x^10+x^9+x^7+2*x^6+x^5+x^3+2*x^2+x ],
[ x^13+x^12+x^10+2*x^9+x^8+x^6+2*x^5+x^4+x^2+x,
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x^11+x^10+2*x^9+x^8+x^7+x^5+x^4+2*x^3+x^2+x ],
[ x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x,

x^10+2*x^9+2*x^8+x^7+x^4+2*x^3+2*x^2+x ],
[ x^15+x^14+x^13+2*x^9+2*x^8+2*x^7+x^3+x^2+x,

x^9+x^8+x^7+2*x^6+2*x^5+2*x^4+x^3+x^2+x ],
[ x^16+x^15+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^2+x,

x^8+x^7+2*x^6+2*x^5+2*x^4+2*x^3+x^2+x ],
[ x^17+x^15+x^13+2*x^11+2*x^9+2*x^7+x^5+x^3+x,

x^7+2*x^6+2*x^5+2*x^4+2*x^3+2*x^2+x ],
[ x^18+x^15+x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^5+x^4+x,

x^6+2*x^5+3*x^4+3*x^3+2*x^2+x ] ]
Set(List(last,D->Set(D)));
[ [ x^6+2*x^5+3*x^4+3*x^3+2*x^2+x,

x^18+x^15+x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^5+x^4+x ],
[ x^7+2*x^6+2*x^5+2*x^4+2*x^3+2*x^2+x,

x^17+x^15+x^13+2*x^11+2*x^9+2*x^7+x^5+x^3+x ],
[ x^8+x^7+2*x^6+2*x^5+2*x^4+2*x^3+x^2+x,

x^16+x^15+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^2+x ],
[ x^9+x^8+x^7+2*x^6+2*x^5+2*x^4+x^3+x^2+x,

x^15+x^14+x^13+2*x^9+2*x^8+2*x^7+x^3+x^2+x ],
[ x^10+2*x^9+2*x^8+x^7+x^4+2*x^3+2*x^2+x,

x^14+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x ],
[ x^11+x^10+2*x^9+x^8+x^7+x^5+x^4+2*x^3+x^2+x,

x^13+x^12+x^10+2*x^9+x^8+x^6+2*x^5+x^4+x^2+x ],
[ x^11+2*x^10+x^9+x^7+2*x^6+x^5+x^3+2*x^2+x,

x^13+2*x^11+2*x^9+2*x^7+2*x^5+2*x^3+x ],
[ x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x ] ]

Thus there are 7 more pairs of Sicherman dice for dodecahedra!
For part d) we repeat this process with a different p.

gap> p:=Sum([1..36],i->x^i);;
dice:=Filtered(divisors(p),i->dtermable(i,6) and Value(i,0)=0 and dtermable(p/i,6) and Value(p/i,0)=0);
[ ]

This shows you cannot achieve an equal probability distribution using 2 die with positive entries.
We now drop the condition that all faces must be labelled positive and try again.

gap> p:=Sum([1..36],i->x^i);;
gap> dice:=Filtered(divisors(p),i->dtermable(i,6) and dtermable(p/i,6));
[ x^6+x^5+x^4+x^3+x^2+x, x^10+x^9+x^6+x^5+x^2+x, x^12+x^11+x^10+x^3+x^2+x,
x^16+x^13+x^10+x^7+x^4+x, x^28+x^25+x^16+x^13+x^4+x,
x^14+x^13+x^8+x^7+x^2+x, x^26+x^25+x^14+x^13+x^2+x, x^11+x^9+x^7+x^5+x^3+x,
x^23+x^21+x^19+x^5+x^3+x, x^9+x^8+x^7+x^3+x^2+x, x^21+x^20+x^19+x^3+x^2+x,
x^31+x^25+x^19+x^13+x^7+x, x^25+x^22+x^19+x^7+x^4+x,
x^27+x^25+x^15+x^13+x^3+x, x^5+x^4+x^3+x^2+x+1, x^9+x^8+x^5+x^4+x+1,
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x^11+x^10+x^9+x^2+x+1, x^15+x^12+x^9+x^6+x^3+1, x^27+x^24+x^15+x^12+x^3+1,
x^13+x^12+x^7+x^6+x+1, x^25+x^24+x^13+x^12+x+1, x^10+x^8+x^6+x^4+x^2+1,
x^22+x^20+x^18+x^4+x^2+1, x^8+x^7+x^6+x^2+x+1, x^20+x^19+x^18+x^2+x+1,
x^30+x^24+x^18+x^12+x^6+1, x^24+x^21+x^18+x^6+x^3+1,
x^26+x^24+x^14+x^12+x^2+1 ]

gap> p/last[1];
x^30+x^24+x^18+x^12+x^6+1

Thus for example one pair of dice that would give you the even probability distribution would be
one standard six-sided die and the other with labels 0,6,12,18,24,30. We now use similar reasoning
to show that there are none for octahedra or dodecahedra.

gap> dice:=Filtered(divisors(p),i->dtermable(i,8) and dtermable(p/i,8));
[ ]
gap> dice:=Filtered(divisors(p),i->dtermable(i,12) and dtermable(p/i,12));
[ ]

For part e), we investigate using the same methods and find that there are no possibilities other
than three standard die or one standard die with a pair of Sicherman dice.

gap> p:=(x+x^2+x^3+x^4+x^5+x^6)^3;;
gap> dtermDivs:=Filtered(divisors(p),i->dtermable(i,6) and Value(i,0)=0);
[ x^10+x^8+x^7+x^6+x^5+x^3, x^8+x^7+x^6+x^5+x^4+x^3, x^6+2*x^5+2*x^4+x^3,
x^9+x^7+x^6+x^5+x^4+x^2, x^7+x^6+x^5+x^4+x^3+x^2, x^5+2*x^4+2*x^3+x^2,
x^8+x^6+x^5+x^4+x^3+x, x^6+x^5+x^4+x^3+x^2+x, x^4+2*x^3+2*x^2+x ]

gap> Filtered(Tuples(dtermDivs,3),t->Product(t)=p);
[ [ x^4+2*x^3+2*x^2+x, x^6+x^5+x^4+x^3+x^2+x, x^8+x^6+x^5+x^4+x^3+x ],
[ x^4+2*x^3+2*x^2+x, x^8+x^6+x^5+x^4+x^3+x, x^6+x^5+x^4+x^3+x^2+x ],
[ x^6+x^5+x^4+x^3+x^2+x, x^4+2*x^3+2*x^2+x, x^8+x^6+x^5+x^4+x^3+x ],
[ x^6+x^5+x^4+x^3+x^2+x, x^6+x^5+x^4+x^3+x^2+x, x^6+x^5+x^4+x^3+x^2+x ],
[ x^6+x^5+x^4+x^3+x^2+x, x^8+x^6+x^5+x^4+x^3+x, x^4+2*x^3+2*x^2+x ],
[ x^8+x^6+x^5+x^4+x^3+x, x^4+2*x^3+2*x^2+x, x^6+x^5+x^4+x^3+x^2+x ],
[ x^8+x^6+x^5+x^4+x^3+x, x^6+x^5+x^4+x^3+x^2+x, x^4+2*x^3+2*x^2+x ] ]

However once again if we allow zeros on our dice, we do get many solutions.

gap> p:=(x+x^2+x^3+x^4+x^5+x^6)^3;;
gap> dtermDivs:=Filtered(divisors(p),i->dtermable(i,6));
[ x^10+x^8+x^7+x^6+x^5+x^3, x^8+x^7+x^6+x^5+x^4+x^3, x^6+2*x^5+2*x^4+x^3,
x^9+x^7+x^6+x^5+x^4+x^2, x^7+x^6+x^5+x^4+x^3+x^2, x^5+2*x^4+2*x^3+x^2,
x^8+x^6+x^5+x^4+x^3+x, x^6+x^5+x^4+x^3+x^2+x, x^4+2*x^3+2*x^2+x,
x^7+x^5+x^4+x^3+x^2+1, x^5+x^4+x^3+x^2+x+1, x^3+2*x^2+2*x+1 ]

gap> Filtered(Tuples(dtermDivs,3),t->Product(t)=p);
[ [ x^3+2*x^2+2*x+1, x^5+x^4+x^3+x^2+x+1, x^10+x^8+x^7+x^6+x^5+x^3 ],
[ x^3+2*x^2+2*x+1, x^6+x^5+x^4+x^3+x^2+x, x^9+x^7+x^6+x^5+x^4+x^2 ],
[ x^3+2*x^2+2*x+1, x^7+x^5+x^4+x^3+x^2+1, x^8+x^7+x^6+x^5+x^4+x^3 ],
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[ x^3+2*x^2+2*x+1, x^7+x^6+x^5+x^4+x^3+x^2, x^8+x^6+x^5+x^4+x^3+x ],
...

Exercise 14, page 64

For c) part 1, we get that the polynomial is irreducible mod 2, and thus is irreducible.

gap> x:=X(Rationals,"x");;
gap> f:=x^5+5*x^2-1;
x^5+5*x^2-1
gap> r:=Integers mod 2;
GF(2)
gap> y:=X(r);
x_1
gap> fr:=Value(f,y);
x_1^5+x_1^2+Z(2)^0
gap> List(Factors(fr),Degree);
[ 5 ]

We try the same trick for the second polynomial.

x:=X(Rationals,"x");;
f:=x^4+4*x^3+6*x^2+4*x-4;
x^4+4*x^3+6*x^2+4*x-4
r:=Integers mod 2;
GF(2)
y:=X(r);
x_1
fr:=Value(f,y);
x_1^4
List(Factors(fr),Degree);
[ 1, 1, 1, 1 ]

However, this degree distribution tells us essentially nothing about the factorization of the
original polynomial. Thus we try using a different ideal.

x:=X(Rationals,"x");;
f:=x^4+4*x^3+6*x^2+4*x-4;
x^4+4*x^3+6*x^2+4*x-4
r:=Integers mod 3;
GF(3)
y:=X(r);
x
fr:=Value(f,y);
x^4+x^3+x-Z(3)^0
List(Factors(fr),Degree);
[ 2, 2 ]
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We now see the polynomial is either irreducible or splits into a product of two quadratic terms.
We try another ideal to see if we can rule out the product of two quadratics. It turns out 13 does
the trick.

x:=X(Rationals,"x");;
f:=x^4+4*x^3+6*x^2+4*x-4;
x^4+4*x^3+6*x^2+4*x-4
r:=Integers mod 13;
GF(13)
y:=X(r);
x_1
fr:=Value(f,y);
x_1^4+Z(13)^2*x_1^3+Z(13)^5*x_1^2+Z(13)^2*x_1+Z(13)^8
List(Factors(fr),Degree);
[ 4 ]

Thus x4 + 4 ∗x3 + 6 ∗x2 + 4 ∗x− 4 is irreducible as well. We now do the third polynomial. Here
we find two different splits that can only refine a trivial partition, thus giving us irreducibility of
x7 − 30 ∗ x5 + 10 ∗ x2 − 120 ∗ x− 60.

gap> x:=X(Rationals,"x");;
gap> f:=x^7-30*x^5+10*x^2-120*x-60;
x^7-30*x^5+10*x^2-120*x-60
gap> r:=Integers mod 7;
GF(7)
gap> y:=X(r);
x_1
gap> fr:=Value(f,y);
x_1^7+Z(7)^5*x_1^5+Z(7)*x_1^2-x_1+Z(7)
gap> List(Factors(fr),Degree);
[ 1, 6 ]
gap> r:=Integers mod 17;
GF(17)
gap> y:=X(r);
x_1
gap> fr:=Value(f,y);
x_1^7+Z(17)^12*x_1^5+Z(17)^3*x_1^2-x_1+Z(17)^10
gap> List(Factors(fr),Degree);
[ 2, 2, 3 ]

Exercise 15, page 64

We will use the command Resultant which takes as input two polynomials and an indeterminant
(x) which is one unknown quantity. This command returns a polynomial which is the product∏

(x,y):P (x)=0,Q(y)=0(x − y). We then use the command Factors(polynomial) which list all of the
possible factors. The roots of these factors are the y-values of the intersection of the two curves.
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For each of these y-values we then plug back into the original polynomials to get polynomials in
only x. We again use factors to find the x-values that correspond to each y-value in the solutions.

gap> x:=X(Rationals,"x");
x
gap> y:=X(Rationals,"y");
y
gap>
p:=x^2*y-3*x*y^2+x^2-3*x*y; x^2*y-3*x*y^2+x^2-3*x*y
gap>
q:=x^3*y+x^3-4*y^2-3*y+1; x^3*y+x^3-4*y^2-3*y+1
gap>
f:=Resultant(p,q,x);
-108*y^9-513*y^8-929*y^7-738*y^6-149*y^5+112*y^4+37*y^3-14*y^2-3*y+1
gap> Factors(f);
[ -108*y+27, y+1, y+1, y+1, y+1, y+1,
y^3-4/27*y+1/27 ]
gap> #Now setting each factor each to zero we can
find solutions in terms of x
gap> y:=-27/-108;
1/4
gap>
p:=x^2*y-3*x*y^2+x^2-3*x*y; 5/4*x^2-15/16*x
gap> Factors(p);
[
5/4*x-15/16, x ]
gap> (15/16)/(5/4);
3/4
gap> #So we have solutions
(0,1/4), (3/4,1/4)
gap> y:=-1;
-1
gap> p:=x^2*y-3*x*y^2+x^2-3*x*y;
0
gap> q:=x^3*y+x^3-4*y^2-3*y+1;
0
gap> #Therefore we have solutions
y=-1
gap> #The last polynomial does not have rational roots

Hence the rational solutions to this system consists of the pairs (0,1/4), (3/4,1/4) and y=-1.

Exercise 16, page 64

a) Using the equations x = r · cos(θ), y = r · sin(θ) we get x = (1 + cos(2θ)) cos(θ) and y =
(1 + cos(2θ)) sin(θ).
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b) We now use the double angle formula cos(2θ) = 2 cos2(θ) − 1 and get x = (1 + 2 cos2(θ) −
1) cos(θ) = 2 · w3 and y = (1 + 2 cos2(θ)− 1) sin(θ) = 2 · w2z.

c) The polynomials are from b) x− 2w3, y − 2w2z as well as z2 + w2 − 1. We now calculate a
Groebner basis with lex ordering with z > w > x > y, this will eliminate z and w if possible.

gap> x:=X(Rationals,"x");;
gap> y:=X(Rationals,"y");;
gap> z:=X(Rationals,"z");;
gap> w:=X(Rationals,"w");;
gap> pols:=[x-2*w^3,y-2*w^2*z,z^2+w^2-1];
[ -2*w^3+x, -2*z*w^2+y, z^2+w^2-1 ]
gap> bas:=ReducedGroebnerBasis(pols,MonomialLexOrdering(z,w,x,y));
[ x^6+3*x^4*y^2+3*x^2*y^4+y^6-4*x^4, 1/2*x^5+3/2*x^3*y^2+x*y^4+y^4*w-2*x^3,
-1/2*x^2+x*w-1/2*y^2, 1/4*x^4+1/2*x^2*y^2+1/4*y^4+y^2*w^2-x^2, w^3-1/2*x,
1/2*x^2+1/2*y^2+y*z-2*w^2, x*z-y*w, z*w^2-1/2*y, z^2+w^2-1 ]

The first element in bas is the only polynomial not involving z and w, it thus is a polynomial
defining the curve. This polynomial does not factor, however the part without the last term does.

gap> curve+4*x^4;
x^6+3*x^4*y^2+3*x^2*y^4+y^6
gap> Collected(Factors(curve+4*x^4));
[ [ x^2+y^2, 3 ] ]

So the curve is defined by (x2 + y2)3 = 4x4.

Exercise 17, page 64

We declare our indeterminates and then use the built-in command ReducedGroebnerBasis and the
built-in monomial orderings MonomialLexOrdering and MonomialGrlexOrdering.

gap> x:=Indeterminate(Rationals,"x");
x
gap> y:=Indeterminate(Rationals,"y");
y
gap> z:=Indeterminate(Rationals,"z");
z
gap> f:=x^5+y^4+z^3-1;
x^5+y^4+z^3-1
gap> g:=x^3+y^2+z^2-1;
x^3+y^2+z^2-1
gap> I:=[f,g];
[ x^5+y^4+z^3-1, x^3+y^2+z^2-1 ]
gap> Size(ReducedGroebnerBasis(I,MonomialLexOrdering()));
7
gap> Size(ReducedGroebnerBasis(I,MonomialGrlexOrdering()));
5
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We repeat the process, and notice this time one basis got larger while the other got smaller!
Additionally, the polynomials in the Lex basis are enormous compared to the ones in the Grlex
basis (not shown here as the output is huge).

gap> f:=x^5+y^4+z^3-1;
x^5+y^4+z^3-1
gap> g:=x^3+y^3+z^2-1;
x^3+y^3+z^2-1
gap> I:=[f,g];
[ x^5+y^4+z^3-1, x^3+y^3+z^2-1 ]
gap> Size(ReducedGroebnerBasis(I,MonomialLexOrdering()));
8
gap> Size(ReducedGroebnerBasis(I,MonomialGrlexOrdering()));
3

Exercise 18, page 65

We compute a Groebner basis but add a “fake” variable a and the relation x ∗ a− 1 to create a as
the inverse of x. Then we use Groebner bases to solve for a in terms of the other variables.

gap> x:=Indeterminate(Rationals,"x");
x
gap> y:=Indeterminate(Rationals,"y");
y
gap> z:=Indeterminate(Rationals,"z");
z
gap> a:=Indeterminate(Rationals,"a");
a
gap> f:=x^2+y*z-2;
x^2+y*z-2
gap> g:=y^2+x*z-3;
x*z+y^2-3
gap> h:=x*y+z^2-5;
x*y+z^2-5
gap> I:=[f,g,h];
[ x^2+y*z-2, x*z+y^2-3, x*y+z^2-5 ]
gap> B:=ReducedGroebnerBasis(I,MonomialLexOrdering());
[ z^8-25/2*z^6+219/4*z^4-95*z^2+361/8,
8/361*z^7+52/361*z^5-740/361*z^3+y+75/19*z,
-88/361*z^7+872/361*z^5-2690/361*z^3+x+125/19*z ]

gap> C:=ReducedGroebnerBasis(Union(B,[x*a-1]),MonomialLexOrdering([a,x,y,z]));
[ z^8-25/2*z^6+219/4*z^4-95*z^2+361/8,
8/361*z^7+52/361*z^5-740/361*z^3+y+75/19*z,
-88/361*z^7+872/361*z^5-2690/361*z^3+x+125/19*z,
200/3971*z^7-1588/3971*z^5+2438/3971*z^3+a+70/209*z ]
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Thus we see from the final relation that the inverse of x must be equal to −200/3971 ∗ z7 +
1588/3971 ∗ z5 − 2438/3971 ∗ z3 − 70/209 ∗ z. We multiply by x and reduce just to check.

gap> xinv:=-(200/3971*z^7-1588/3971*z^5+2438/3971*z^3+70/209*z);
-200/3971*z^7+1588/3971*z^5-2438/3971*z^3-70/209*z
gap> PolynomialReducedRemainder(x*xinv,B,MonomialLexOrdering());
1

Exercise 19, page 65

Using symmetry as suggested, we have that our one perpendicular bisector is the line x = 1/2. Thus
we simply write down equations for the other two perpendicular bisectors in terms of C = (c1, c2)
and show that they intersect when x = 1/2.

gap> x:=Indeterminate(Rationals,"x");
x
gap> y:=Indeterminate(Rationals,"y");
y
gap> c1:=Indeterminate(Rationals,"c1");
c1
gap> c2:=Indeterminate(Rationals,"c2");
c2
gap> f:=c2*y-c2^2/2+c1*(x-c1/2);
x*c1+y*c2-1/2*c1^2-1/2*c2^2
gap> g:=c2*y-c2^2/2+(c1-1)*(x-(1+c1)/2);
x*c1+y*c2-1/2*c1^2-1/2*c2^2-x+1/2
gap> I:=[f,g];
[ x*c1+y*c2-1/2*c1^2-1/2*c2^2, x*c1+y*c2-1/2*c1^2-1/2*c2^2-x+1/2 ]
gap> B:=ReducedGroebnerBasis(I,MonomialLexOrdering());
[ y*c2-1/2*c1^2-1/2*c2^2+1/2*c1, x-1/2 ]

Exercise 20, page 65

We work over the quotient field of the ring Q[a, b, c, d, e, f ] and denote the coordinates of the center
by (x, y). Then the circle is described by the following polynomial equations.

(a− x)2 + (d− y)2 = (b− x)2 + (e− y)2 = (c− x)2 + (f − y)2.

The ideal generated by these polynomials must contain polynomials of degree 1 that express x and
y. A Groebner basis with respect to degree must find these

gap> bas:=PolynomialRing(Rationals,["a","b","c","d","e","f"]);
Rationals[a,b,c,d,e,f]
gap> AssignGeneratorVariables(bas);
#I Assigned the global variables [ a, b, c, d, e, f ]
gap> x:=X(bas,"x");
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#I You are creating a polynomial *over* a polynomial ring (i.e. in an
#I iterated polynomial ring). Are you sure you want to do this?
#I If not, the first argument should be the base ring, not a polynomial ring
#I Set ITER_POLY_WARN:=false; to remove this warning.
x
gap> y:=X(bas,"y");
#I You are creating a polynomial *over* a polynomial ring (i.e. in an
#I iterated polynomial ring). Are you sure you want to do this?
#I If not, the first argument should be the base ring, not a polynomial ring
#I Set ITER_POLY_WARN:=false; to remove this warning.
y
gap> l:=[(a-x)^2+(d-y)^2-(b-x)^2-(e-y)^2,(b-x)^2+(e-y)^2-(c-x)^2-(f-y)^2];
[ (-2*a+2*b)*x+(-2*d+2*e)*y+(a^2-b^2+d^2-e^2),
(-2*b+2*c)*x+(-2*e+2*f)*y+(b^2-c^2+e^2-f^2) ]

gap> gb:=ReducedGroebnerBasis(l,MonomialGrlexOrdering());
[ y+((2*a^2*b-2*a^2*c-2*a*b^2+2*a*c^2-2*a*e^2+2*a*f^2+2*b^2*c-2*b*c^2+2*b*d^2

-2*b*f^2-2*c*d^2+2*c*e^2)/(4*a*e-4*a*f-4*b*d+4*b*f+4*c*d-4*c*e)),
x+((-2*a^2*e+2*a^2*f+2*b^2*d-2*b^2*f-2*c^2*d+2*c^2*e-2*d^2*e+2*d^2*f

+2*d*e^2-2*d*f^2-2*e^2*f+2*e*f^2)/(4*a*e-4*a*f-4*b*d+4*b*f+4*c*d-4*c*e)) ]

We conclude that with z = 2(ae− af − bd+ bf + cd− ce) we get that

x =
a2e− a2f − b2d+ b2f + c2d− c2e+ d2e− d2f − de2 + df2 + e2f − ef2

z

y = −a
2b− a2c− ab2 + ac2 − ae2 + af2 + b2c− bc2 + bd2 − bf2 − cd2 + ce2

z

Exercise 21, page 65

Here we use the fact that the lcm of f and g is just the t-free polynomial in the Groebner basis for
< tf, (1− t)g >.

gap> x:=Indeterminate(Rationals,"x");
x
gap> y:=Indeterminate(Rationals,"y");
y
gap> z:=Indeterminate(Rationals,"z");
z
gap> t:=Indeterminate(Rationals,"t");
t
gap> f:=x^3*z^2+x^2*y*z^2-y^3*z^2+x^4+x^3*y-x^2*y^2-x*y^3;
x^3*z^2+x^2*y*z^2-y^3*z^2+x^4+x^3*y-x^2*y^2-x*y^3
gap> g:=x^2*z^4-y^2*z^4+2*x^3*z^2-2*x*y^2*z^2+x^4-x^2*y^2;
x^2*z^4-y^2*z^4+2*x^3*z^2-2*x*y^2*z^2+x^4-x^2*y^2
gap> I:=[t*f,(1-t)*g];
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[ x^3*z^2*t+x^2*y*z^2*t-y^3*z^2*t+x^4*t+x^3*y*t-x^2*y^2*t-x*y^3*t,
-x^2*z^4*t+y^2*z^4*t-2*x^3*z^2*t+x^2*z^4+2*x*y^2*z^2*t-y^2*z^4-x^4*t+2*x^3*z\

^2+x^2*y^2*t-2*x*y^2*z^2+x^4-x^2*y^2 ]
gap> B:=ReducedGroebnerBasis(I,MonomialLexOrdering([t,x,y,z]));
[ x^5*z^6+x^4*y*z^6-x^3*y^2*z^6-2*x^2*y^3*z^6+y^5*z^6+3*x^6*z^4+3*x^5*y*z^4-4*\
x^4*y^2*z^4-6*x^3*y^3*z^4+x^2*y^4*z^4+3*x*y^5*z^4+3*x^7*z^2+3*x^6*y*z^2-5*x^5*\
y^2*z^2-6*x^4*y^3*z^2+2*x^3*y^4*z^2+3*x^2*y^5*z^2+x^8+x^7*y-2*x^6*y^2-2*x^5*y^\
3+x^4*y^4+x^3*y^5,
y^4*z^8*t+x^4*z^8+x^3*y*z^8-x*y^3*z^8-y^4*z^8+4*x^5*z^6+4*x^4*y*z^6-4*x^3*y^\

2*z^6-7*x^2*y^3*z^6+3*y^5*z^6+5*x^6*z^4+4*x^5*y*z^4-9*x^4*y^2*z^4-9*x^3*y^3*z^\
4+5*x^2*y^4*z^4+5*x*y^5*z^4-y^6*z^4+2*x^7*z^2-6*x^5*y^2*z^2-x^4*y^3*z^2+6*x^3*\
y^4*z^2+x^2*y^5*z^2-2*x*y^6*z^2-x^7*y-x^6*y^2+2*x^5*y^3+2*x^4*y^4-x^3*y^5-x^2*\
y^6,
y^4*z^6*t+x^4*z^6+x^3*y*z^6+x*y^4*z^4*t-x*y^3*z^6-y^4*z^6+3*x^5*z^4+3*x^4*y*\

z^4-2*x^3*y^2*z^4-4*x^2*y^3*z^4-x*y^4*z^4+y^5*z^4+3*x^6*z^2+3*x^5*y*z^2-4*x^4*\
y^2*z^2-5*x^3*y^3*z^2+x^2*y^4*z^2+2*x*y^5*z^2+x^7+x^6*y-2*x^5*y^2-2*x^4*y^3+x^\
3*y^4+x^2*y^5,
y^4*z^6*t+x^4*z^6+x^3*y*z^6-x*y^3*z^6+y^5*z^4*t-y^4*z^6+4*x^5*z^4+5*x^4*y*z^\

4-3*x^3*y^2*z^4-7*x^2*y^3*z^4+x*y^5*z^2*t-x*y^4*z^4+2*y^5*z^4+5*x^6*z^2+7*x^5*\
y*z^2-6*x^4*y^2*z^2-11*x^3*y^3*z^2+x^2*y^4*z^2+4*x*y^5*z^2+2*x^7+3*x^6*y-3*x^5\
*y^2-5*x^4*y^3+x^3*y^4+2*x^2*y^5,
x*y^2*z^4*t+x^3*z^4+x^2*y^2*z^2*t+x^2*y*z^4-x*y^2*z^4-y^3*z^4+2*x^4*z^2+2*x^\

3*y*z^2-2*x^2*y^2*z^2-2*x*y^3*z^2+x^5+x^4*y-x^3*y^2-x^2*y^3,
x^2*z^8*t-y^2*z^8*t+x^3*z^6*t-x^2*z^8-2*x*y^2*z^6*t+y^2*z^8-2*x^3*z^6-x^2*y*\

z^6-x*y^3*z^4*t+2*x*y^2*z^6+y^4*z^4*t+y^3*z^6-x^3*y*z^4+x*y^4*z^2*t+x*y^3*z^4+\
2*x^5*z^2+x^4*y*z^2-2*x^3*y^2*z^2-x^2*y^3*z^2+x^6+x^5*y-x^4*y^2-x^3*y^3,
-x^2*z^4*t+y^2*z^4*t-x^3*z^2*t+x^2*y*z^2*t+x^2*z^4+2*x*y^2*z^2*t-y^3*z^2*t-y\

^2*z^4+x^3*y*t+2*x^3*z^2-x*y^3*t-2*x*y^2*z^2+x^4-x^2*y^2,
x^2*z^4*t-y^2*z^4*t+2*x^3*z^2*t-x^2*z^4-2*x*y^2*z^2*t+y^2*z^4+x^4*t-2*x^3*z^\

2-x^2*y^2*t+2*x*y^2*z^2-x^4+x^2*y^2 ]
gap> lcm:=last[1];
x^5*z^6+x^4*y*z^6-x^3*y^2*z^6-2*x^2*y^3*z^6+y^5*z^6+3*x^6*z^4+3*x^5*y*z^4-4*x^\
4*y^2*z^4-6*x^3*y^3*z^4+x^2*y^4*z^4+3*x*y^5*z^4+3*x^7*z^2+3*x^6*y*z^2-5*x^5*y^\
2*z^2-6*x^4*y^3*z^2+2*x^3*y^4*z^2+3*x^2*y^5*z^2+x^8+x^7*y-2*x^6*y^2-2*x^5*y^3+\
x^4*y^4+x^3*y^5

We then can compute the gcd by using the formula gcd(f, g) ∗ lcm(f, g) = f ∗ g.

gap> f*g/lcm;
1

Exercise 22, page 102

The group of symmetries of an equilateral triangle triangle is D6 = S3 Therefore we can use the
multiplication table for S3. We will use the command SymmetricGroup to get our group, and then
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Elements(G) to get the list of group elements. Finally we call MultiplcationTable to get the Cayley
graph for the group.

gap> G:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> Order(G);
6
gap>
e:=Elements(G);
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
gap>
M:=MultiplicationTable(e);
[ [ 1, 2, 3, 4, 5, 6 ], [ 2, 1, 4, 3, 6,
5 ], [ 3, 5, 1, 6, 2, 4 ],
[ 4, 6, 2, 5, 1, 3 ], [ 5, 3, 6, 1, 4, 2 ], [ 6, 4, 5, 2, 3, 1 ] ]

It should be noted, if your group is finitely presented you can still get he multiplication table, using
the command CosetTable(group, subgroup) where your subgroup is the group generated by (1).

gap> f:=FreeGroup("a","b");
<free group on the generators [ a, b ]>
gap> AssignGeneratorVariables(f);
#I Assigned the global variables
[ a, b ]
gap> #This allows me to call the elements "a", "b" rather
than f.1
gap> # and f.2
gap> rels:=[a^2,b^2, (a*b)^3];
[ a^2, b^2,
a*b*a*b*a*b ]
gap> g:=f/rels;
<fp group on the generators [ a, b ]>
gap> #g is now a finitely presented group
gap> Order(g);
6
gap> #Be
careful about asking for order if your group
gap> #is not finite.
gap> tab:=CosetTable(g,Subgroup(g,[g.1^0]));
[ [ 2, 1, 5, 6, 3, 4 ],
[ 2, 1, 5, 6, 3, 4 ], [ 3, 4, 1, 2, 6, 5 ],
[ 3, 4, 1, 2, 6, 5 ] ]

gap> #This gives the Cayley table for G/H where H=<1>

Exercise 23, page 102

gap> G:=Group((1,2,3,8)(4,5,6,7),(1,7,3,5)(2,6,8,4));
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Group([ (1,2,3,8)(4,5,6,7), (1,7,3,5)(2,6,8,4) ])
gap> Elements(G);
[ (), (1,2,3,8)(4,5,6,7), (1,3)(2,8)(4,6)(5,7), (1,4,3,6)(2,7,8,5),
(1,5,3,7)(2,4,8,6), (1,6,3,4)(2,5,8,7), (1,7,3,5)(2,6,8,4),
(1,8,3,2)(4,7,6,5) ]

gap> Size(G);
8

Exercise 24, page 103

Exercise 25, page 103

Exercise 27, page 104

We construct the group and look at the sizes of the subgroups.

gap> G:=Group((1,2,3),(2,3,4));
Group([ (1,2,3), (2,3,4) ])
gap> s:=Union(List(ConjugacyClassesSubgroups(G),Elements));
[ Group(()), Group([ (2,4,3) ]), Group([ (1,3)(2,4), (1,2)(3,4), (2,4,3) ]),
Group([ (1,2)(3,4) ]), Group([ (1,3)(2,4), (1,2)(3,4) ]),
Group([ (1,2,3) ]), Group([ (1,4,2) ]), Group([ (1,3,4) ]),
Group([ (1,3)(2,4) ]), Group([ (1,4)(2,3) ]) ]
gap> List(s,Size);
[ 1, 3, 12, 2, 4, 3, 3, 3, 2, 2 ]

For drawing the subgroup lattice, we would like to get the subgroups somewhat more in order.
So we sort them by size and then call a double List command to create an incidence matrix from
which the lattice can easily be drawn.

gap> Sort(s,function(v,w) return Size(v)<Size(w); end);
gap> List(s,i->List(s,j->IsSubset(j,i)));
[ [ true, true, true, true, true, true, true, true, true, true ],
[ false, true, false, false, false, false, false, false, true, true ],
[ false, false, true, false, false, false, false, false, true, true ],
[ false, false, false, true, false, false, false, false, true, true ],
[ false, false, false, false, true, false, false, false, false, true ],
[ false, false, false, false, false, true, false, false, false, true ],
[ false, false, false, false, false, false, true, false, false, true ],
[ false, false, false, false, false, false, false, true, false, true ],
[ false, false, false, false, false, false, false, false, true, true ],
[ false, false, false, false, false, false, false, false, false, true ] ]

Finally, the command Filtered gives us the cyclic and normal subgroups.
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gap> Filtered(s,IsCyclic);
[ Group(()), Group([ (1,2)(3,4) ]), Group([ (1,3)(2,4) ]),
Group([ (1,4)(2,3) ]), Group([ (2,4,3) ]), Group([ (1,2,3) ]),
Group([ (1,4,2) ]), Group([ (1,3,4) ]) ]
gap> Filtered(s,H->IsNormal(G,H));
[ Group(()), Group([ (1,3)(2,4), (1,2)(3,4) ]),
Group([ (1,3)(2,4), (1,2)(3,4), (2,4,3) ]) ]

Exercise 28, page 105

a) Follows easily from basic properties of groups.
For b), we enter the group G and then use the command Action to define a new action of G.

gap> G:=Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> Size(G);
8
gap> tups:=Tuples([1..4],2);
[ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 1 ], [ 2, 2 ], [ 2, 3 ],
[ 2, 4 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ], [ 3, 4 ], [ 4, 1 ], [ 4, 2 ],
[ 4, 3 ], [ 4, 4 ] ]

gap> sets:=Set(tups,T->Set(T));
[ [ 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2 ], [ 2, 3 ], [ 2, 4 ], [ 3 ],
[ 3, 4 ], [ 4 ] ]

gap> sets:=Filtered(sets,S->Size(S)=2);
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ], [ 3, 4 ] ]
gap> Action(G,sets,OnSets);
Group([ (1,4,6,3)(2,5), (1,4)(3,6) ])

Exercise 29, page 105

We label the faces of the dodecahedron and then write down A, B, and C as permutations on 12
points.

gap> A:=(2,3,4,5,6)(7,8,9,10,11);
(2,3,4,5,6)(7,8,9,10,11)
gap> B:=(1,2,3)(4,6,8)(5,7,9)(10,11,12);
(1,2,3)(4,6,8)(5,7,9)(10,11,12)
gap> C:=(1,2)(3,6)(4,7)(5,8)(9,11)(10,12);
(1,2)(3,6)(4,7)(5,8)(9,11)(10,12)

Thus < A > has 4 orbits and should fix 24 colorings (choosing a solid color for each orbit).
Similarly, < B > has 4 orbits and should fix 24 colorings. Finally, < C > has 6 orbits and should
fix 26 colorings. The identity clearly fixes all 212 colorings.
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Applying the Cauchy-Frobenius-Burnside Lemma, we get that the number of distinct colorings
is the average number of fixed points of all group elements:

gap> 1/60*(1*2^12+24*16+20*16+15*64);
96

Thus there are 96 different ways to color the dodecahedron with green and gold.
Note that we can easily use GAP to check how many fixed points there are for the different types

of elements by letting the permutations act on 12-tuples of colors (here the colors are represented
by 0 and 1).

gap> colorings:=Cartesian(List([1..12],x->[0,1]));;
gap> colorings[3];
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
gap> List([1..12],j->colorings[3][j^A]);
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ]
gap> Number(colorings,col->List([1..12],j->col[j^A])=col);
16
gap> Number(colorings,col->List([1..12],j->col[j^B])=col);
16
gap> Number(colorings,col->List([1..12],j->col[j^C])=col);
64

Exercise 30, page 106

a) With thegroup as defined, we have to be careful to move the cubie 16/19/24 in its right position.

With this, we get the following unfolded diagram:

8 14
23 4

11 7 20 10 13 17 2 21
3 22 12 5 18 16 19 6

15 1
9 24

b) We now can read off where each face went: 1 went to the position where 22 was, and so on:

Face 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Position 22 17 7 4 12 20 6 1 23 10 5 11 13 2 21 16 14 15 19 9 18 8 3 24

We write this permutation in cycle form and get (1, 22, 8)(2, 17, 14)(3, 7, 6, 20, 9, 23)(5, 12, 11)(15, 21, 18).
With the same setup as in the handout we get:

gap> Factorization(cube,a);
L^-1*T^-1*F*L^2*F^-1*L^-1*F^2*L^-1*T

The sequence to turn the cube back (after placing the 16/19/24 cubie in the right position) therefore
is the inverse, i.e.

gap> last^-1;
T^-1*L*F^-2*L*F*L^-2*F^-1*T*L
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Note that a factorization of a−1 produes a different, but equivalent result:

gap> Factorization(cube,a^-1);
L^-1*F*L^-1*T^-1*F^-1*T^2*F^-1*T*F^-1*T

Exercise 31, page 106

We begin by constructing the rings Z20 and Z24 using the command in GAP ZmodnZ(n). Then
we can compute the group of units using the command Units(G) which returns the group of units.
Finally to test isomorphism we use the command IsomorphismGroups(U,V) which will return either
the map between the two groups, or fail if the groups are not isomorphic.

gap> G:=ZmodnZ(20);
(Integers mod 20)
gap> U:=Units(G);
<group with
2 generators>
gap> H:=ZmodnZ(24);
(Integers mod 24)
gap>
V:=Units(H);
<group with 3 generators>
gap> IsomorphismGroups(U,V);
fail

Therefore we can conclude that these two groups are not isomorphic.
b) Again we construct these two groups and then use the test IsomorphismGroups(U,D).

gap> G:=ZmodnZ(20);
(Integers mod 20)
gap> U:=Units(G);
<group of
size 8 with 2 generators>
gap> D:=TransitiveGroup(4,3);
D(4)
gap>
IsomorphismGroups(U,D);
fail

Therefore we can conclude that these two groups are not isomorphic.
c) We will construct both of these groups and apply the IsomorphismGroups test again.

gap> G:=ZmodnZ(20);
(Integers mod 20)
gap> U:=Units(G);
<group of
size 8 with 2 generators>
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gap> H:=ZmodnZ(15);
(Integers mod 15)
gap>
V:=Units(H);
<group with 2 generators>
gap> IsomorphismGroups(U,V);
CompositionMapping( [ (1,5)(2,6)(3,7)(4,8), (1,7,4,6)(2,5,3,8) ] ->
[ ZmodnZObj( 11, 15 ), ZmodnZObj( 7, 15 )
], <action isomorphism> )

Therefore we conclude that these two groups are isomorphic. GAP has also returned a map between
the two groups.

Exercise 32, page 111

The command ElementaryDivisorsTransformationsMat returns a record that has the normal
form as well as transforming matrices.

gap> A:=[[60,-60,48,-232],[-9,9,-6,36],[-21,21,-18,80]];
[ [ 60, -60, 48, -232 ], [ -9, 9, -6, 36 ], [ -21, 21, -18, 80 ] ]
gap> snf:=ElementaryDivisorsTransformationsMat(A);
rec( normal := [ [ 1, 0, 0, 0 ], [ 0, 12, 0, 0 ], [ 0, 0, 0, 0 ] ],
rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
rowQ := [ [ -5, -34, 1 ], [ -13, -85, 1 ], [ 1, 2, 2 ] ],
colC := [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 1 ] ],
colQ := [ [ 1, -6, 3, 2 ], [ 0, 4, -11, -12 ], [ 0, 1, -3, -3 ],

[ 0, 0, 0, 1 ] ], rank := 2,
rowtrans := [ [ -5, -34, 1 ], [ -13, -85, 1 ], [ 1, 2, 2 ] ],
coltrans := [ [ 1, -6, 3, 2 ], [ 0, 4, -11, -12 ], [ 0, 1, -3, -3 ],

[ 1, -6, 3, 3 ] ] )
gap> Display(snf.normal);
[ [ 1, 0, 0, 0 ],
[ 0, 12, 0, 0 ],
[ 0, 0, 0, 0 ] ]
gap> Display(snf.rowtrans);
[ [ -5, -34, 1 ],
[ -13, -85, 1 ],
[ 1, 2, 2 ] ]
gap> Display(snf.coltrans);
[ [ 1, -6, 3, 2 ],
[ 0, 4, -11, -12 ],
[ 0, 1, -3, -3 ],
[ 1, -6, 3, 3 ] ]

To solve Ax = b, we want to use the transforming matrices to transform the equation by
multiplying both sides by P on the left and multiplying the right hand side of A by QQ−1. Thus
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we get the Smith Normal Form of A on the left hand side and Pb on the right hand side, ie:

PAQQ−1x = Pb

We use GAP to solve that easier system for Q−1x and then multiply by Q to get the original x.

gap> Q:=(snf.coltrans);
[ [ 1, -6, 3, 2 ], [ 0, 4, -11, -12 ], [ 0, 1, -3, -3 ], [ 1, -6, 3, 3 ] ]
gap> P:=snf.rowtrans;
[ [ -5, -34, 1 ], [ -13, -85, 1 ], [ 1, 2, 2 ] ]
gap> P*A*Q;
[ [ 1, 0, 0, 0 ], [ 0, 12, 0, 0 ], [ 0, 0, 0, 0 ] ]
gap> b:=[[-76],[15],[23]];
[ [ -76 ], [ 15 ], [ 23 ] ]
gap> P*b;
[ [ -107 ], [ -264 ], [ 0 ] ]
gap> a:=Indeterminate(Integers,"a");
a
gap> b:=Indeterminate(Integers,"b");
b
gap> -264/12;
-22
gap> Q*[[-107],[-22],[a],[b]];
[ [ 3*a+2*b+25 ], [ -11*a-12*b-88 ], [ -3*a-3*b-22 ], [ 3*a+3*b+25 ] ]

Thus x = [3 ∗ a+ 2 ∗ b+ 25,−11 ∗ a− 12 ∗ b− 88,−3 ∗ a− 3 ∗ b− 22, 3 ∗ a+ 3 ∗ b+ 25]T for any
a, b ∈ Z.

Exercise 33, page 120

To begin with we need to describe how to factor a polynomial modulo any prime. We begin by
defining x as a variable in Zp[x] using the command x:=Indeterminate(GF(p),”x”); Next we use
the command Factors(f) where f = x4 + 4x3 + 6x2 + 4x − 4. Then we can create a list that just
contains the degree of these factors, using the command Degree(f). Finally we can run through the
list and store how many times each degree occurs. To do this we will write a small function, which
will input the number of primes we wish to try. The function will return a list of lists where each
list starts [prime, num times one, num time two, num times three, num times four].

DegFreq:=function(n)
local i, one, two, three, four, primes, x,
fact, deg, ans, j, poly;

primes:=List([1..n],i->Primes[i]);
ans:=[];

for i in [1..n] do
x:=Indeterminate(GF(primes[i]),"x");
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poly:=x^4+4*x^3+6*x^2+4*x-4;
fact:=Factors(poly);
deg:=List(fact,x->Degree(x));
one:=0; two:=0; three:=0; four:=0;

for j in [1..Size(deg)] do
if deg[j]=1 then
one:=one+1;
fi;
if
deg[j]=2 then two:=two+1;
fi;
if deg[j]=3 then
three:=three+1;
fi;
if deg[j]=4 then
four:=four+1;
fi;
od;
Add(ans,[primes[i],one,two,three,four]);
od;

return ans;

end;
gap> d:=DegFreq(168);
[ [ 2, 4, 0, 0, 0 ], [ 3, 0, 2, 0, 0 ],
[ 5, 4, 0, 0, 0 ], [ 7, 0, 2, 0, 0 ],
...
[ 991, 2, 1, 0, 0 ], [ 997, 0, 0, 0, 1 ] ]

gap> k:=TransposedMat(d);
[ [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

...
[ 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
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0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 1, 0, 0, 1 ] ]

gap> Sum(k[2]); #Number of degree 1 polys
160
gap> Sum(k[3]);
#Number of degree 2 polys
170
gap> Sum(k[4]); #Number of degree 3
polys
0
gap> Sum(k[5]); #Number of degree 4 polys
43

Therefore for f = x4+4x3+6x2+4x−4 for the first 1000 primes the degree distribution is 160 degree
1 polynomials, 170 degree 2 polynomials, 0 degree 3 polynomials, and 43 degree 4 polynomials. To
do f = x4 − 10x2 + 1 and x4 + 3 ∗ x+ 1 we just change the function in our code.

gap># for f=x^4-10x^2+1
gap> Sum(k[2]); #Number of degree 1 polys
148
gap> Sum(k[3]); #Number of degree 2 polys
262
gap> Sum(k[4]);
#Number of degree 3 polys
0
gap> Sum(k[5]); #Number of degree 4
polys
0
gap> #for f=x^4+3x+1
gap> Sum(k[2]); #Number of degree 1
polys
159
gap> Sum(k[3]); #Number of degree 2 polys
78
gap>
Sum(k[4]); #Number of degree 3 polys
59
gap> Sum(k[5]); #Number of
degree 4 polys
45

Exercise 34, page 120

One can simply type in some polynomials and find that they have different groups.

gap> x:=Indeterminate(Rationals,"x");
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x
gap> f:=x^4+1;
x^4+1
gap> Factors(f);
[ x^4+1 ]
gap> t:=GaloisType(f);
2
gap> StructureDescription(TransitiveGroup(4,t));
"C2 x C2"
gap> f:=x^4+x^3+x^2+x+1;
x^4+x^3+x^2+x+1
gap> Factors(f);
[ x^4+x^3+x^2+x+1 ]
gap> t:=GaloisType(f);
1
gap> StructureDescription(TransitiveGroup(4,t));
"C4"
gap> f:=x^4+x^3+x^2+1;
x^4+x^3+x^2+1
gap> Factors(f);
[ x^4+x^3+x^2+1 ]
gap> t:=GaloisType(f);
5
gap> StructureDescription(TransitiveGroup(4,t));
"S4"
gap> f:=x^4+x^3+2*x^2+2*x+1;
x^4+x^3+2*x^2+2*x+1
gap> Factors(f);
[ x^4+x^3+2*x^2+2*x+1 ]
gap> t:=GaloisType(f);
3
gap> StructureDescription(TransitiveGroup(4,t));
"D8"

However after many guesses, the fourth type, A4 seems elusive. So we can do a more automated
search by having GAP create all polynomials with coefficients in [−5..5].

gap> tups:=Filtered(Tuples([-5..5],4),t-> not t[4]=0);;
gap> polys:=List(tups,t->x^4+t[1]*x^3+t[2]*x^2+t[3]*x+t[4]);;
gap> irredPolys:=Filtered(polys,g->Size(Factors(g))=1);;
gap> First(irredPolys, f->GaloisType(f)=4);
x^4-3*x^3+3*x^2+2*x+1

We verify this with the original method.

gap> f:=x^4-3*x^3+3*x^2+2*x+1;
x^4-3*x^3+3*x^2+2*x+1
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gap> Factors(f);
[ x^4-3*x^3+3*x^2+2*x+1 ]
gap> t:=GaloisType(f);
4
gap> StructureDescription(TransitiveGroup(4,t));
"A4"

Exercise 35, page 121

We have GAP construct all polynomials of degree dividing 4 and then filter out the irreducibles.

gap> x:=Indeterminate(GF(2),"x");
x
gap> tupsDeg2:=Filtered(Tuples(GF(2),2),t-> not t[2]=Zero(GF(2)));
[ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ]
gap> polysDeg2:=List(tupsDeg2,t->x^2+t[1]*x+t[2]);
[ x^2+Z(2)^0, x^2+x+Z(2)^0 ]
gap> irredPolysDeg2:=Filtered(polysDeg2,g->Size(Factors(g))=1);
[ x^2+x+Z(2)^0 ]
gap> tupsDeg4:=Filtered(Tuples(GF(2),4),t-> not t[4]=Zero(GF(2)));
[ [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ],
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ]

gap> polysDeg4:=List(tupsDeg4,t->x^4+t[1]*x^3+t[2]*x^2+t[3]*x+t[4]);
[ x^4+Z(2)^0, x^4+x+Z(2)^0, x^4+x^2+Z(2)^0, x^4+x^2+x+Z(2)^0, x^4+x^3+Z(2)^0,
x^4+x^3+x+Z(2)^0, x^4+x^3+x^2+Z(2)^0, x^4+x^3+x^2+x+Z(2)^0 ]

gap> irredPolysDeg4:=Filtered(polysDeg4,g->Size(Factors(g))=1);
[ x^4+x+Z(2)^0, x^4+x^3+Z(2)^0, x^4+x^3+x^2+x+Z(2)^0 ]
gap> Product(Union([x,x+1],irredPolysDeg2,irredPolysDeg4));
x^16+x

Exercise 36, page 122

We follow the hint from above.

gap> x:=Indeterminate(Rationals,"x");
x
gap> r:=x^6+108;
x^6+108
gap> e:=AlgebraicExtension(Rationals,r);
<algebraic extension over the Rationals of degree 6>
gap> y:=Indeterminate(e,"y");
y
gap> Factors(y^2+y+1);
[ y+(-1/12*a^3+1/2), y+(1/12*a^3+1/2) ]
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Thus we see that ζ = 1/12 ∗ a3 − 1/2. The image of ζ under the γ 7→ −γ map is −1/12 ∗ γ3 − 1/2.
Similarly, the image of 3

√
2 under the γ 7→ −γ map is

3
√

2 = −γ
4

36
− γ

2
.

Exercise 37, page 130

The command PrimePowersInt takes an integer n as input and returns a list of primes that
appear in the prime factorization of n and their exponents. Specifically, the list is of the form
[p1, e1, p2, e2, . . . , pm, em] where pe11 · p

e2
2 · · · · · p

em
m = n.

gap> PrimePowersInt(Factorial(50));
[ 2, 47, 3, 22, 5, 12, 7, 8, 11, 4, 13, 3, 17, 2, 19, 2, 23, 2, 29, 1, 31, 1,
37, 1, 41, 1, 43, 1, 47, 1 ]

The number of zeroes at the end of the integer corresponds to the number of tens in the
factorization. The prime 2 appears 47 times but the prime 5 only appears 12 times. Thus the
number of tens in the factorization is 12, so there are 12 zeroes at the end of 50!.

Exercise 38, page 130

First notice that 73 is prime.

gap> IsPrime(73);
true

Thus we need to find a primitive root for the field of order 73. We find this using the command
PrmitiveRootMod. Then the command LogMod will compute the discrete logarithms to express 6
and 32 as powers of that primitive root.

gap> PrimitiveRootMod(73);
5
gap> LogMod(6,5,73);
14
gap> LogMod(32,5,73);
40

Thus, by plugging in the appropriate powers of 5 for 6 and 32, we are solving the equation
514x = 540 (mod 73), or equivalently 14x = 40 (mod 72). We again use GAP to solve for x.

gap> 40/14 mod 72;
44

Finally, we check that x = 44 really does work.

gap> 6^44 mod 73;
32
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Exercise 39, page 131

This function will return true if n is a pseudoprime for m and false otherwise.

gap> IsPseudoprime:=function(n,m)
return PowerMod(m,n-1,n)= 1;

end;

function( n, m ) ... end

gap> IsPseudoprime(1062123847,2);

false

So we see that 1062123847 is not prime since it does not satisfy Fermat’s Little Theorem for
the base 2.

Exercise 40, page 131

We use our function IsPseudoprime from above to make a function to determine if a number is a
Carmichael Number.

gap> IsCarmichaelNumber:=function(n)
local phin;
phin:=Phi(n);
return (not phin = n-1) and phin=Size(Filtered(PrimeResidues(n),x->IsPseudoprime(n,x)));

end;

function( n ) ... end

gap> IsCarmichaelNumber(1729);

true

Exercise 41, page 131

We call ChineseRem, the function that implements the Chinese Remainder Theorem, first listing
the moduli and then the residues.

gap> ChineseRem([7,11,13],[2,5,9]);
555
gap> 555 mod 7;
2
gap> 555 mod 11;
5
gap> 555 mod 13;
9
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Exercise 42, page 131

Applying the hint, we get 4n = 27z + 19. Since all values are integers, we have that 27z = −19
(mod 4). We can solve this for the smallest possible positive value of z.

gap> -19/27 mod 4;
3

Plugging in we get: n = 25x = 8y = 5z = 3. Thus the smallest possible number is 25 coconuts.

Exercise 43, page 131

We first declare our variables, using the standard RSA notation where d is our decryption exponent,
the multiplicative inverse of e working mod φ(m).

gap> p:=187963;
187963
gap> q:=163841;
163841
gap> IsPrime(p);
true
gap> IsPrime(q);
true
gap> m:=p*q;
30796045883
gap> phi:=(p-1)*(q-1);
30795694080
gap> e:=48611;
48611
gap> d:=1/e mod phi;
20709535691

We now must raise the encrypted numbers to the decryption exponent and then take the residue
mod m. To do this efficiently, we use the command PowerMod. Finally we note that the encoding
described is the default as used in StringNumbers for interpreting as string.

gap> code:= [ 5272281348, 21089283929, 3117723025, 26844144908,
> 22890519533, 26945939925, 27395704341, 2253724391, 1481682985,
> 2163791130, 13583590307, 5838404872, 12165330281, 501772358,
> 7536755222 ];;
gap> message:=List(code,x->PowerMod(x,d,m));
[ 2311301815, 2311301913, 2919293018, 1527311515, 2425162913, 1915241315,
1124142431, 2312152830, 1815252835, 1929301815, 2731151524, 2516231130,
1815231130, 1913291316, 1711312929 ]

gap> StringNumbers(message,m);
"MATHEMATICSISTHEQUEENOFSCIENCEANDNUMBERTHEORYISTHEQUEENOFMATHEMATICSCFGAUSS"
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Which more readably is: “Mathematics is the queen of science and number theory is the queen of
mathematics. C.F. Gauss”

Nitpicky note: Since it is Carl Friedrich Gauß, the second to last number was corrected, the
web pages version reads “K” instead.

Exercise 44, page 132

gap> list:=[ 17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13,
13/11, 15/2, 1/7, 55 ];

[ 17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11,
15/2, 1/7, 55 ]

gap> n:=2;
2
gap> while true do

n:=First(list*n,IsInt);
e:=LogInt(n,2);
if 2^e=n then

Print(e,"\n");
fi;

od;
2
3
5
7
11
13
17
19
23
29
31
37
41
43
user interrupt

Of course this will run forever, so we call a user interrupt by pressing CTRL-Pause in GGAP or
CTRL-C in classic GAP.

The list of exponents is in fact the list of all prime numbers!

Exercise 45, page 132

By hand, we have
(

3342
3343

)
=
(
−1

3343

)
= (−1)

3342
2 = −1. We verify in GAP.

gap> Legendre(3342,3343);
-1
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Exercise 46, page 132

To verify that 3 is a primitive root for 401, we simply call IsPrimitiveRootMod.

gap> IsPrimitiveRootMod(3,401);
true

Shanks’ algorithm relies on the fact that if indg(y) = x, then for any m, we have x = qm + r
for q = bx/mc ≤ b(p − 1)/mc and r = x (mod m). Thus we have gx = y (mod p) so gmq = yg−r

(mod p). Thus we will compute two tables: the first table will have values of gmq (mod p) for
1 ≤ q ≤ (p − 1)/m and the second will have values of yg−r (mod p) for 0 ≤ r ≤ m − 1. We
then look for matches, and deduce what the value of x must have been by what values of q and r
produced those matches.

To make the tables roughly equal size, m = b
√
p− 1c is used.

In this case we have g = 3, p = 401, y = 19, and m = 20. Thus we will make two tables of
length 20, one having the values of 320q (mod 401) for 1 ≤ q ≤ 20 and the second will have values
of 19 · 3−r (mod 401) for 0 ≤ r ≤ 19.

gap> tbl1:=List([1..20],q->PowerMod(3,20*q,401));
[ 379, 83, 179, 72, 20, 362, 56, 372, 237, 400, 22, 318, 222, 329, 381, 39,
345, 29, 164, 1 ]

gap> tbl2:=List([0..19],r->PowerMod(3,-r,401)*19 mod 401);
[ 19, 140, 314, 372, 124, 175, 192, 64, 155, 319, 240, 80, 294, 98, 300, 100,
167, 323, 375, 125 ]

gap> Intersection(tbl1,tbl2);
[ 372 ]
gap> q:=Position(tbl1,372);
8
gap> r:=Position(tbl2,372)-1;
3
gap> x:=20*q+r;
163

We check that the index was in fact correct.

gap> PowerMod(3,163,401);
19

Exercise 47, page 132

First, we initialize our variables, compute the quadratic roots of our base, and find a number near
the square root of n to build the interval around.

gap> n:=12968419;
12968419
gap> base:=[3,5,7,19,29];
[ 3, 5, 7, 19, 29 ]
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gap> baseWithOne:=Concatenation(base,[1]);
[ 3, 5, 7, 19, 29, 1 ]
gap> roots:=List(base,p->RootsMod(n,p));
[ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 8, 11 ], [ 5, 24 ] ]
gap> First([1..1000000],x-> x^2 > n);
3602
gap> interval:=[3602-80..3602+80];
[ 3522 .. 3682 ]
gap> interval:=List(interval,num->[num,num^2-n]);
[ [ 3522, -563935 ], [ 3523, -556890 ], [ 3524, -549843 ], [ 3525, -542794 ],
[ 3526, -535743 ], [ 3527, -528690 ], [ 3528, -521635 ], [ 3529, -514578 ],
[ 3530, -507519 ], [ 3531, -500458 ], [ 3532, -493395 ], [ 3533, -486330 ],
[ 3534, -479263 ], [ 3535, -472194 ], [ 3536, -465123 ], [ 3537, -458050 ],
[ 3538, -450975 ], [ 3539, -443898 ], [ 3540, -436819 ], [ 3541, -429738 ],

...
[ 3678, 559265 ], [ 3679, 566622 ], [ 3680, 573981 ], [ 3681, 581342 ],
[ 3682, 588705 ] ]

We now use congruence to the quadratic roots to divide out by the appropriate primes and see
what splits completely. (note that if n were much larger, this can be done more efficiently by using
logarithms and subtracting rather than dividing)

gap> for i in [1..Size(base)] do
p:=base[i];
rootsModp:=roots[i];
for k in interval do

if k[1] mod p in rootsModp then
k[2]:=k[2]/p;

fi;
od;

od;
gap> splits:=Filtered(interval,k->IsSubset(baseWithOne,Set(Factors(AbsoluteValue(k[2])))));
[ [ 3602, 3 ], [ 3612, 15625 ], [ 3678, 29 ] ]
gap> goodQxVals:=List(splits,k->[k[1],(k[1]^2-n)]);
[ [ 3602, 5985 ], [ 3612, 78125 ], [ 3678, 559265 ] ]
gap> factorizations:=goodQxVals;
[ [ 3602, 5985 ], [ 3612, 78125 ], [ 3678, 559265 ] ]
gap> for k in factorizations do

k[2]:=FactorsInt(AbsoluteValue(k[2]));
od;
gap> factorizations;
[ [ 3602, [ 3, 3, 5, 7, 19 ] ], [ 3612, [ 5, 5, 5, 5, 5, 5, 5 ] ],
[ 3678, [ 5, 7, 19, 29, 29 ] ] ]

gap> goodQxVals:=List(splits,k->[k[1],(k[1]^2-n)]);
[ [ 3602, 5985 ], [ 3612, 78125 ], [ 3678, 559265 ] ]
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Now that we have our numbers that completely split over the factor base, we make exponent
vectors (mod 2) and use NullspaceMat to find a combination that gives us a perfect square.

gap> exponentVectors:=List(goodQxVals,function(k) if k[2]>0 then return [Zero(GF(2))]; else return
[One(GF(2))]; fi; end);
[ [ 0*Z(2) ], [ 0*Z(2) ], [ 0*Z(2) ] ]
gap> primePowersMod2:=function(L)

local M;
M:=[];
for p in base do

if Number(L,x->x=p) mod 2 =0 then
Add(M,Zero(GF(2)));

else Add(M,One(GF(2)));
fi;

od;
return M;

end;

function( L ) ... end
gap> for i in [1..Size(exponentVectors)] do

Append(exponentVectors[i],primePowersMod2(factorizations[i][2]));
od;
gap> Display(exponentVectors);
. . 1 1 1 .
. . 1 . . .
. . 1 1 1 .
gap> null:=NullspaceMat(exponentVectors);
[ <an immutable GF2 vector of length 3> ]
gap> Display(null);
1 . 1

At last, we construct our perfect square and use the difference of two squares factorization to
get a factorization of n.

gap> x:=Product(List(Positions(null[1],One(GF(2))),i->goodQxVals[i][1])) mod n;
279737
gap> y:=Sqrt(Product(List(Positions(null[1],One(GF(2))),i->goodQxVals[i][2]))) mod n;
57855
gap> Gcd(x+y,n);
2221
gap> Gcd(x-y,n);
5839
gap> n=2221*5839;
true
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Additionally, GAP has the quadratic sieve implemented via the command FactorsMPQS.

gap> FactorsMPQS(12968419);
[ 2221, 5839 ]

Exercise 48, page 132

The number 2 factors as (1 + i)(1 − i) in the Gaussian Integers. Primes that are congruent to
3 (mod 4) are still prime over the Gaussian Integers so 7 is still prime. However, since primes
congruent to 1 (mod 4) can be written as the sum of two squares, we get a factorization of 5 as
5 = (2 + i)(2− i). Thus our factorization is 6860 = (1 + i)2(1− i)2(2 + i)(2− i)73. We now use GAP
for comparison.

gap> Factors(GaussianIntegers,6860);
[ -1+E(4), 1+E(4), 1+E(4), 1+E(4), 1+2*E(4), 2+E(4), 7, 7, 7 ]

Notice it gives essentially the same answer but the primes are in a slightly different form;
factorization is only unique up to associates (in this case, multiples of i).

Exercise 49, page 132

The first part follows immediately from Fermat’s Little Theorem, since ap−1 = 1 (mod p) so then
if k is any multiple of p − 1, we can raise both sides to the k/(p − 1) power to get that ak = 1
(mod p) as well. Thus p must divide both n and ak − 1.

For the second part, we use GAP.

gap> n:=387598193;
387598193
gap> k:=Lcm([1..8]);
840
gap> Gcd(2^k-1,n);
281
gap> IsPrime(281);
true
gap> Factors(280);
[ 2, 2, 2, 5, 7 ]
gap> IsPrime(n/281);
true
gap> n/281;
1379353

Thus we have the prime factorization of 387598193 = 281 · 1379353.
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