Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler

Department of Mathematics
University of Pennsylvania

June 5, 2009
Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.
Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.

Figure 1. The concrete realizations of the absolute and relative cohomology groups $H^p(M;\mathbb{R})$ and $H^p(M,\partial M;\mathbb{R})$.

Department of Mathematics, University of Pennsylvania
E-mail address: shonkwil@math.upenn.edu
URL: http://www.math.upenn.edu/~shonkwil
de Rham’s Theorem

Suppose M^n is a compact, oriented, smooth manifold. Then

$$H^p(M; \mathbb{R}) \cong C^p(M)/\mathcal{E}^p(M),$$

where $C^p(M)$ is the space of closed p-forms on M and $\mathcal{E}^p(M)$ is the space of exact p-forms.
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \ast \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $\mathcal{C}^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $\mathcal{C}^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$

Kodaira called this the space of harmonic p-fields on M.

Hodge’s Theorem

If M^n is a closed, oriented, smooth Riemannian manifold,

$$H^p(M; \mathbb{R}) \cong \mathcal{H}^p(M).$$
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}^p_N(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.$$
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}^p_N(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.$$

Then

$$H^p(M; \mathbb{R}) \cong \mathcal{H}^p_N(M).$$
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M). \]
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M). \]

\[\mathcal{H}^p_D(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0, i^*\omega = 0 \}. \]
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}_N^p(M) \cap \mathcal{H}_D^p(M) = \{0\}$$
Non-orthogonality

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}^p_N(M) \cap \mathcal{H}^p_D(M) = \{0\}$$

...but they are not orthogonal!
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$H^p_N(M) \cap H^p_D(M) = \{0\}$$

...but they are not orthogonal!
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$
Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$

$$\mathcal{E}_\partial \mathcal{H}_N^p(M) := \{ \omega \in \mathcal{H}_N^p(M) : i^* \omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$

$$\mathcal{E}_{\partial} \mathcal{H}_N^p(M) := \{ \omega \in \mathcal{H}_N^p(M) : i^* \omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$

Interior subspace of $\mathcal{H}_D^p(M)$:

$$\ast \mathcal{E}_{\partial} \mathcal{H}_N^{n-p}(M) = c \mathcal{E}_{\partial} \mathcal{H}_D^p(M)$$

$$= \{ \eta \in \mathcal{H}_D^p(M) : i^* \ast \eta = d\psi, \psi \in \Omega^{n-p-1}(\partial M) \}.$$
To prove that there is an element of $c_{EH}^p N(M)$ having arbitrary preassigned periods on $c_p^1 \hookrightarrow \ldots c_p^g$, it suffices to show that $(F_1 \hookrightarrow \ldots \hookrightarrow F_g) \mapsto (C_1 \hookrightarrow \ldots \hookrightarrow C_g)$ is an isomorphism.

Suppose some set of F_i-values gives all zero C_i-values, meaning that $i^* \eta$ is zero in the cohomology of ∂M. In other words, the form $i^* \eta$ is exact, meaning that $\eta \in E_{\partial H}^p N(M)$, the interior subspace of $H^p N(M)$. Since $E_{\partial H}^p N(M)$ is orthogonal to $c_{EH}^p N(M)$, this implies that $\eta = 0$, so $\tilde{\eta} = \pm \star \eta = 0$ and hence the periods F_i of $\tilde{\eta}$ must have been zero.

Therefore, the map $(F_1 \hookrightarrow \ldots \hookrightarrow F_g) \mapsto (C_1 \hookrightarrow \ldots \hookrightarrow C_g)$ is an isomorphism, completing Step 1.

Step 2: Let $\omega \in H^p N(M)$ and let $C_1 \hookrightarrow \ldots \hookrightarrow C_g$ be the periods of ω on the above p-cycles $c_p^1 \hookrightarrow \ldots \hookrightarrow c_p^g$. Let $\alpha \in c_{EH}^p N(M)$ be the unique form guaranteed by Step 1 having the same periods on this homology basis.

Then $\beta = \omega - \alpha$ has zero periods on the p-cycles $c_p^1 \hookrightarrow \ldots \hookrightarrow c_p^g$; since β is a closed form on M, it certainly has zero period on each p-cycle of ∂M which bounds in M. Hence, β has zero periods on all p-cycles of ∂M, meaning that $i^* \beta$ is exact, so $\beta \in E_{\partial H}^p N(M)$.

Therefore, $\omega = \alpha + \beta \in c_{EH}^p N(M) + E_{\partial H}^p N(M)$, so $H^p N(M)$ is indeed the sum of these two subspaces, as claimed in (2.1.8). This completes the proof of the theorem.

Theorem 2.1.2 allows the details of Figure 1.1 to be filled in, as shown in Figure 2.1.

Definition (DeTurck–Gluck)

The *Poincaré duality angles* of the Riemannian manifold M are the principal angles between the interior subspaces.
What do the Poincaré duality angles tell you?

Guess
If M is “almost” closed, the Poincaré duality angles of M should be small.
Consider $\mathbb{C}P^2$ with its usual Fubini-Study metric. Let $p \in \mathbb{C}P^2$. Then define

$$M_r := \mathbb{C}P^2 - B_r(p).$$
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
∂M_r is a 3-sphere.
∂M_r is a 3-sphere.

M_r is the D^2-bundle over \mathbb{CP}^1 ($\simeq S^2(1/2)$) with Euler characteristic 1.
\(\partial M_r \) is a 3-sphere.

\(M_r \) is the \(D^2 \)-bundle over \(\mathbb{CP}^1 \) (\(\cong S^2(1/2) \)) with Euler characteristic 1.

\(M_r \) has absolute cohomology in dimensions 0 and 2.
∂M_r is a 3-sphere.

M_r is the D^2-bundle over $\mathbb{CP}^1 (\simeq S^2(1/2))$ with Euler characteristic 1.

M_r has absolute cohomology in dimensions 0 and 2.

M_r has relative cohomology in dimensions 2 and 4.
\[\partial M_r \text{ is a 3-sphere.} \]

\[M_r \text{ is the } D^2\text{-bundle over } \mathbb{C}\mathbb{P}^1 (\simeq S^2(1/2)) \text{ with Euler characteristic 1.} \]

\[M_r \text{ has absolute cohomology in dimensions 0 and 2.} \]

\[M_r \text{ has relative cohomology in dimensions 2 and 4.} \]

Therefore, \(M_r \) has a single Poincaré duality angle \(\theta_r \) between \(\mathcal{H}_N^2(M_r) \) and \(\mathcal{H}_D^2(M_r) \).
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on \mathcal{M}_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$

Find closed and co-closed $SU(2)$-invariant forms on M_r satisfying Neumann and Dirichlet boundary conditions.
The Poincaré duality angle for M_r

$$
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
$$
The Poincaré duality angle for M_r

\[
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
\]

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.
The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.
The Poincaré duality angle for M_r

\[
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
\]

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.

Generalizes to $\mathbb{C}P^n - B_r(p)$.
Consider

\[N_r : = G_2 \mathbb{R}^n - \nu_r (G_1 \mathbb{R}^{n-1}) . \]
Consider

\[N_r := G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}). \]

Theorem

- As \(r \to 0 \), all the Poincaré duality angles of \(N_r \) go to zero.
- As \(r \) approaches its maximum value of \(\pi/2 \), all the Poincaré duality angles of \(N_r \) go to \(\pi/2 \).
Conjecture

If M^n is a closed Riemannian manifold and N^k is a closed submanifold of codimension ≥ 2, the Poincaré duality angles of $M - \nu_r(N)$

$\quad m - \nu_r(N)$

go to zero as $r \to 0$.
What can you learn about the topology of M from knowledge of ∂M?
Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
The Voltage-to-Current map

Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$(\gamma \nabla u) \cdot \nu = -\gamma \frac{\partial u}{\partial \nu}$$
The map $\Lambda_{\text{cl}} : C^\infty(\partial M) \to C^\infty(\partial M)$ defined by

$$f \mapsto \frac{\partial u}{\partial \nu}$$

is the classical \textit{Dirichlet-to-Neumann map}.
The map $\Lambda_{cl} : C^\infty(\partial M) \to C^\infty(\partial M)$ defined by

$$f \mapsto \frac{\partial u}{\partial \nu}$$

is the classical *Dirichlet-to-Neumann map*.

Theorem (Lee-Uhlmann)

*If M^n is a compact, analytic Riemannian manifold with boundary, then M is determined up to isometry by Λ_{cl}.***
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M)$$
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda : \Omega^p(\partial M) \to \Omega^{n-p-1}(\partial M)$$

Theorem (Belishev–Sharafutdinov)

The data $(\partial M, \Lambda)$ completely determines the cohomology groups of M.
Define the *Hilbert transform* $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$(-1)^{np + n + p} \cos^2 \theta_i$

are the non-zero eigenvalues of an appropriate restriction of T^2.
Define the Hilbert transform $T := dΛ^{-1}$.

Theorem

If $θ_1, \ldots, θ_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$$(-1)^{np+n+p} \cos^2 θ_i$$

are the non-zero eigenvalues of an appropriate restriction of T^2.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda)\)? Till now, the authors cannot answer the question.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda)\)? Till now, the authors cannot answer the question.

Theorem

The mixed cup product

\[
\cup : H^p(M; \mathbb{R}) \times H^q(M, \partial M; \mathbb{R}) \rightarrow H^{p+q}(M, \partial M; \mathbb{R})
\]

is completely determined by the data \((\partial M, \Lambda)\) when the relative class is restricted to come from the boundary subspace.
• Poincaré duality angles for $G_4\mathbb{R}^8 - \nu_r(G_3\mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?
Some questions

• Poincaré duality angles for $G_4 \mathbb{R}^8 - \nu_r(G_3 \mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?

• What is the limiting behavior of the Poincaré duality angles as the manifold “closes up”?

• Can the full mixed cup product be recovered from $(\partial M, \Lambda)$? What about other cup products?

• Can the L^2 inner product on $H^p N(M)$ and $H^p D(M)$ be recovered from $(\partial M, \Lambda)$?
Some questions

• Poincaré duality angles for $G_4 \mathbb{R}^8 - \nu_r(G_3 \mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?
• What is the limiting behavior of the Poincaré duality angles as the manifold “closes up”?
• Can the full mixed cup product be recovered from $(\partial M, \Lambda)$? What about other cup products?
Some questions

- Poincaré duality angles for $G_4 \mathbb{R}^8 - \nu_r(G_3 \mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?
- What is the limiting behavior of the Poincaré duality angles as the manifold “closes up”?
- Can the full mixed cup product be recovered from $(\partial M, \Lambda)$? What about other cup products?
- Can the L^2 inner product on $\mathcal{H}_N^p(M)$ and $\mathcal{H}_D^p(M)$ be recovered from $(\partial M, \Lambda)$?
Thanks!