HW 4

Math 261, S19

Please see the course syllabus for details on how to turn in your homework assignments. This one is due at the beginning of your class on <u>Friday, March 1</u>.

1. (5 pts.) True or False

- (a) Let z = 5t, and f(x, y, z) be a function from \mathbb{R}^3 to \mathbb{R} . Then $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial z}$.
- (b) Let z=5t, and f(x,y,z) be a function from \mathbb{R}^3 to \mathbb{R} . Then $\frac{\partial f}{\partial t}=5\frac{\partial f}{\partial z}$.
- (c) Let z = 5t, and f(x, y, z) be a function from \mathbb{R}^3 to \mathbb{R} . Then $\frac{\partial f}{\partial t} = 1/5 \frac{\partial f}{\partial z}$.
- (d) Let h(x, y) be a function from \mathbb{R}^2 to \mathbb{R} and P a point in the domain of h. It is possible that the directional derivative of h at P is equal to 1 for every direction vector.
- (e) Let h(x,y) be a function from \mathbb{R}^2 to \mathbb{R} and P a point in the domain of h. It is possible that the directional derivative of h at P is equal to 0 for every direction vector.
- 2. (3 pts.) Suppose function f(x, y) depends on variables x and y, which are themselves functions of variables α , β , and γ (i.e., $x = x(\alpha, \beta, \gamma)$ and $y = y(\alpha, \beta, \gamma)$). Fill in the blanks for the chain rule to compute $\frac{\partial f}{\partial \beta}$:

$$\frac{\partial f}{\partial \beta} = \frac{\partial \ \square}{\partial \ \square} \frac{\partial \ \square}{\partial \ \square} + \frac{\partial \ \square}{\partial \ \square} \frac{\partial \ \square}{\partial \ \square}$$

3. (3 pts.) Let

$$g(u, v) = u^{2} + v^{3},$$

$$u(t) = \cos(t),$$

$$v(t) = \ln(t).$$

Compute $\frac{dg}{dt}$. (Please use only the variable t in your response, but do not bother multiplying everything out.)

- 4. (3 pts.) Suppose z is a function of x and y and that $x^2z^2 + y\sin(z) = 1$. Find $\frac{\partial z}{\partial x}$.
- 5. (3 pts.) Find the derivative of $f(x,y) = xy y^2$ at point (1,2) in the direction of $\mathbf{v} = \langle 3, 4 \rangle$. Please simplify your answer to a number. (Notice that \mathbf{v} is not a unit vector!)

6. (3 pts.) Find a direction vector \mathbf{v} such that the derivative of $f(x,y) = xy - y^2$ at point (1,2) in the direction of \mathbf{v} is equal to 0.