HW 3

Math 261, S19

Please see the course syllabus for details on how to turn in your homework assignments. This one is due at the beginning of your class on **Friday**, **February 22**.

- 1. (5 pts.) True or False
 - (a) Let h(x, y) be a continuous function. Then for any poiny (x_0, y_0) in the domain of h, the limit of h as (x, y) approach the point (x_0, y_0) exists.
 - (b) Let h(x,y) = x/y. The limit of h as (x,y) approach the point (1,1) exists.
 - (c) Let h(x,y) = x/y. The limit of h as (x,y) approach the point (0,0) exists.
 - (d) Let $h(x,y) = \begin{cases} 3 & (x,y) = (0,0) \\ 1 & (x,y) \neq (0,0) \end{cases}$. The limit of h as (x,y) approach the point (0,0) doesn't exist.
 - (e) Let $h(x,y)=\left\{\begin{array}{ll} 3 & (x,y)=(0,0)\\ 1 & (x,y)\neq(0,0) \end{array}\right.$ The limit of h as (x,y) approach the point (0,0) is equal to 3.
- 2. (3 pts.) If $f(x, y, z) = \sqrt{x^3 + \sin(y) y \ln(z)}$, find $f(2, \frac{\pi}{2}, 1)$. Perform elementary simplifications.
- 3. (3 pts.) Sketch the domain of $g(x,y) = \ln(1-2x-2y)$.
- 4. (3 pts.) Let $h(x, y, z) = 3x^2z + z\cos(\pi y \pi x) + 3e^z$. Determine $\lim_{(x,y,z)\to(1,2,0)} h(x,y,z)$.
- 5. (3 pts.) The function $k(x,y) = \frac{7x^8y}{-2x^9 + 9y^9}$ has no limit as $(x,y) \to (0,0)$.

Show this by computing the limit of the function along the two following paths:

- (a) $t \mapsto (t,0)$. This notation indicates the path (x(t),y(t))=(t,0), or equivalently, the path given by y=0.
- (b) $t \mapsto (t,t)$. This notation indicates the path (x(t),y(t))=(t,t), or equivalently, the path given by y=x.

Note (and hint): the nice thing about the parametric notation for the paths $t \mapsto (f(t), g(t))$ is that it suggests what you should do to compute the limit along the path: plug in the function f(t) for x, the function g(t) for y, and then take the limit as $t \to 0$.

6. (3 pts.) Compute $\frac{\partial h}{\partial x}$ for the function in #4.