
http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/ Wolfgang Bangerth

Lecture 41.25:

Parallelization on a cluster of
distributed memory machines

Part 2: Debugging with MPI

http://www.dealii.org/ Wolfgang Bangerth

Debugging with MPI

General observations:
● Debugging single-threaded programs is difficult enough
● Debugging MPI programs sucks (truth!)

● It is essential to know common error sources
● It is essential not to get confused

● There are no free parallel debuggers...
● ...or other free tools that could make your life simpler
● There is TotalView (but it is commercial)

http://www.dealii.org/ Wolfgang Bangerth

Debugging with MPI

Common problems:
● Deadlocks of various kinds
● Erroneously believing that one code block takes very long

● More information on debugging such things: see the
deal.II FAQs

http://www.dealii.org/ Wolfgang Bangerth

Deadlocks

Definition:

● Informally: “The program hangs”

● Formally: “A situation in which two or more competing
actions are each waiting for the other to finish, and thus
neither ever does”

http://www.dealii.org/ Wolfgang Bangerth

Deadlocks

Example 1: We think of deadlocks as situations like this:

void f() {
 do_work (items[0]); // do some work we know has to be done

 // if our time has expired, let someone else do the other item
 if (run time > expected run time)
 MPI_Send (items[1], ...);
 // otherwise complete our work and see if anyone else has more work
 else {
 do_work (items[1]);
 while (run time < max run time) {
 Item next_item;
 MPI_Recv (&next_item, …);
 do_work (next_item);
 }
}

http://www.dealii.org/ Wolfgang Bangerth

Deadlocks

Example 1: We think of deadlocks as situations like this:
[…]

Analysis:

● All processors may end up waiting for incoming messages
in the same place

● Thus, nobody moves – the program hangs!

Approach to debugging:

● Find out where each MPI process is

● Understand why

http://www.dealii.org/ Wolfgang Bangerth

Deadlocks

Example 2: Deadlocks more often look like this:

Now imagine there is a bug in need_to_sum(): it returns
true only for some processes.

void f() {
 int ii = foo(); // compute something locally
 if (need_to_sum(my_rank)) {
 int sum;
 MPI_Reduce (&ii, &sum, 1, MPI_INT, MPI_SUM, ...);
 …;
 }

 int kk = bar(); // compute something else here
 MPI_Reduce (&kk, …);
}

http://www.dealii.org/ Wolfgang Bangerth

How long does this operation take?

Example 3: Imagine this situation:

● This is supposed to measure how long my_function takes
on processor 0

● But in parallel computing, how long a function takes
depends on other ranks as well!

Timer t;
t.start();
my_function();
t.stop();
if (my_rank == 0)
 std::cout << "Calling my_function() took " << timer() << " seconds.\n";

http://www.dealii.org/ Wolfgang Bangerth

How long does this operation take?

Example 3:

Situation 1:
● compute_something_locally() is quick on proc 0, but

takes long on proc 1
● But proc 0 will have to wait all of this time in MPI_Reduce

Result: Erroneous conclusion that my_function() takes long
on processor 0!

void my_function () {
 double val = compute_something_locally();
 double global_sum = 0;
 MPI_Reduce (&val, &global_sum, MPI_DOUBLE, 1, …);
 if (my MPI rank == 0)
 std::cout << "Global sum = " << global_sum << std::endl;
 }

http://www.dealii.org/ Wolfgang Bangerth

How long does this operation take?

Example 3: Graphical representation:

proc0

proc1

 my_function() MPI_Reduce()

Situation 1:
● compute_something_locally() is quick on proc 0, but

takes long on proc 1
● But proc 0 will have to wait all of this time in MPI_Reduce

Result: Erroneous conclusion that my_function() takes long
on processor 0!

Before my_function()

Before my_function()

http://www.dealii.org/ Wolfgang Bangerth

How long does this operation take?

Example 3:

Situation 2:
● The operation before my_function() takes long on proc. 1
● But proc. 0 will have to wait MPI_Reduce in my_function

Result: Erroneous conclusion that c_s_l() takes long
anywhere!

Timer t;
t.start();
my_function();
t.stop();
if (my_rank == 0)
 std::cout << "Calling my_function() took " << timer() << " seconds.\n";

http://www.dealii.org/ Wolfgang Bangerth

How long does this operation take?

Example 3: Graphical representation:

proc0

proc1

 my_function() MPI_Reduce()

Situation 2:
● The operation before my_function() takes long on proc. 1
● But proc. 0 will have to wait MPI_Reduce in my_function

Result: Erroneous conclusion that c_s_l() takes long
anywhere!

Before my_function()

Before my_function()

http://www.dealii.org/ Wolfgang Bangerth

Debugging with MPI

Summary:

● Parallel computations present many riddles during
debugging

● One can spend much time looking in the wrong place

● It is important to be familiar with patterns of common
mistakes

● Learn how to use debuggers for parallel computations:
– via mpirun -np 4 xterm -e gdb ./myprog
– by attaching a debugger to a running program

http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

	Slide 589
	Slide 590
	Slide 591
	Slide 592
	Slide 593
	Slide 594
	Slide 595
	Slide 596
	Slide 597
	Slide 598
	Slide 599
	Slide 600
	Slide 601
	Slide 602
	Slide 603

