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Debugging with MPI

General observations:
● Debugging single-threaded programs is difficult enough
● Debugging MPI programs sucks (truth!)

● It is essential to know common error sources
● It is essential not to get confused

● There are no free parallel debuggers...
● ...or other free tools that could make your life simpler
● There is TotalView (but it is commercial)
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Debugging with MPI

Common problems:
● Deadlocks of various kinds
● Erroneously believing that one code block takes very long

● More information on debugging such things: see the 
deal.II FAQs
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Deadlocks

Definition:

● Informally: “The program hangs”

● Formally: “A situation in which two or more competing 
actions are each waiting for the other to finish, and thus 
neither ever does”
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Deadlocks

Example 1: We think of deadlocks as situations like this:

void f() {
    do_work (items[0]); // do some work we know has to be done

    // if our time has expired, let someone else do the other item
    if (run time > expected run time)
        MPI_Send (items[1], ...);
    // otherwise complete our work and see if anyone else has more work
    else  {
          do_work (items[1]);
          while (run time < max run time) {
               Item next_item;
               MPI_Recv (&next_item, …);
               do_work (next_item);
          }
}
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Deadlocks

Example 1: We think of deadlocks as situations like this:
[…]

Analysis:

● All processors may end up waiting for incoming messages 
in the same place

● Thus, nobody moves – the program hangs!

Approach to debugging:

● Find out where each MPI process is

● Understand why
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Deadlocks

Example 2: Deadlocks more often look like this:

Now imagine there is a bug in need_to_sum(): it returns 
true only for some processes.

void f() {
    int ii = foo();       // compute something locally
    if (need_to_sum(my_rank)) {
        int sum;
        MPI_Reduce (&ii, &sum, 1, MPI_INT, MPI_SUM, ...);                
        …;
    }

    int kk = bar();   // compute something else here
    MPI_Reduce (&kk, …);
}
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How long does this operation take?

Example 3: Imagine this situation:

● This is supposed to measure how long my_function takes 
on processor 0

● But in parallel computing, how long a function takes 
depends on other ranks as well!

Timer t;
t.start();
my_function();
t.stop();
if (my_rank == 0)
  std::cout << "Calling my_function() took " << timer() << " seconds.\n";
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How long does this operation take?

Example 3:

Situation 1:
● compute_something_locally() is quick on proc 0, but 

takes long on proc 1
● But proc 0 will have to wait all of this time in MPI_Reduce

Result: Erroneous conclusion that my_function() takes long 
on processor 0!

void my_function () {
    double val = compute_something_locally();
    double global_sum = 0;
    MPI_Reduce (&val, &global_sum, MPI_DOUBLE, 1, …);                 
    if (my MPI rank == 0)
      std::cout << "Global sum = " << global_sum << std::endl;
  }
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How long does this operation take?

Example 3: Graphical representation:

proc0

proc1

        my_function()    MPI_Reduce()

Situation 1:
● compute_something_locally() is quick on proc 0, but 

takes long on proc 1
● But proc 0 will have to wait all of this time in MPI_Reduce

Result: Erroneous conclusion that my_function() takes long 
on processor 0!

Before my_function()                                                                                           

Before my_function()                                                                                           
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How long does this operation take?

Example 3:

Situation 2:
● The operation before my_function() takes long on proc. 1
● But proc. 0 will have to wait MPI_Reduce in my_function

Result: Erroneous conclusion that c_s_l() takes long 
anywhere!

Timer t;
t.start();
my_function();
t.stop();
if (my_rank == 0)
  std::cout << "Calling my_function() took " << timer() << " seconds.\n";
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How long does this operation take?

Example 3: Graphical representation:

proc0

proc1

        my_function()    MPI_Reduce()

Situation 2:
● The operation before my_function() takes long on proc. 1
● But proc. 0 will have to wait MPI_Reduce in my_function

Result: Erroneous conclusion that c_s_l() takes long 
anywhere!

Before my_function()                                                                                           

Before my_function()                                                                                           
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Debugging with MPI

Summary:

● Parallel computations present many riddles during 
debugging

● One can spend much time looking in the wrong place

● It is important to be familiar with patterns of common 
mistakes

● Learn how to use debuggers for parallel computations:
– via   mpirun -np 4 xterm -e gdb ./myprog
– by attaching a debugger to a running program
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